I. механика

Угловое ускорение

Рассматривая, что такое ускорение, следует остановиться на соответствующей угловой характеристике.

Выше было введено понятие угловой скорости, которая измеряется в радианах в секунду (рад/с). Если найти производную этой скорости по времени, то мы получим величину углового ускорения:

Несложно показать, что угловая величина связана с тангенциальной компонентой полного ускорения следующим соотношением:

При постоянном угловом ускорении касательная компонента at будет больше для точек, которые находятся дальше от оси вращения.

К нормальной компоненте угловое ускорение не имеет никакого отношения.

Среднее ускорение.

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

,

где  — это вектор ускорения. Направление вектора ускорения такое же, как у направления изменения скорости Δ =  — 

где  является начальной скоростью. В момент времени t1 (см. рис. ниже) у тела . В момент времени t2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ =  — . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате – это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с2, значит, скорость тела ежесекундно растет на 5 м/с.

Угловое ускорение

Этот вид также нельзя оставить без внимания. Приводя все формулы ускорения, стоит отметить, что угловую величину удобно использовать, когда система вращается вокруг некоторой оси. Она определяет быстроту изменения угловой скорости и выражается в радианах в квадратную секунду. Для определения этого вида ускорения применяют следующие формулы:

Первое равенство показывает, что для определения углового ускорения α следует найти производную от угловой скорости ω по времени либо вторую производную по времени от угла поворота θ.

Вторая строчка — это выражение, которое следует из уравнения моментов. Здесь M — момент силы, которая раскручивает систему, I — момент инерции, который играет роль массы тела во время линейного движения.

Примечания

  1. У планет газовых гигантов и звёзд «поверхность» понимается как область меньших высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105Па). Также у звёзд поверхностью иногда считают поверхность фотосферы.
  2. Аналог уравнения второго закона Ньютона, выполняющийся для неинерциальных систем отсчёта.
  3.  (англ.). Международное бюро мер и весов. Дата обращения 9 апреля 2013.
  4. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М. : Изд-во стандартов, 1990. — С. 237.
  5. . physics.nist.gov. Дата обращения 7 марта 2020.
  6. Грушинский Н. П. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 521. — 707 с. — 100 000 экз.
  7. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 245—246. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.

Полное ускорение

Вектор полного ускорения — это всегда сумма тангенциальной и нормальной компонент. Поскольку они перпендикулярны друг другу, то для вычисления модуля полного ускорения можно воспользоваться теоремой Пифагора. Искомая формула ускорения полного примет вид:

Чтобы определить, куда направлен вектор a¯, достаточно вычислить угол между ним и какой-либо компонентой. Например, угол φ между векторами a¯ и at¯ равен:

Напомним, что центростремительное ускорение отлично от нуля только тогда, когда кривизна траектории движения отлична от бесконечности. В случае же прямолинейного движения полное ускорение по величине и направлению равно тангенциальной компоненте.

Вращательное движение: перемещение, скорость и ускорение

Если вы привыкли решать задачи о прямолинейном движении типа “некто движется из пункта А в пункт Б”, то задачи о вращательном движении можно формулировать аналогично, но для этого нужно приобрести некоторый опыт. На рис. 7.1 мяч движется криволинейно по окружности, а не прямолинейно по линии. Это движение можно было бы описать как комбинацию прямолинейных движений с координатами X и Y. Однако гораздо удобнее характеризовать его иначе, а именно как вращательное движение с одной координатой ​\( \theta \)​. В данном примере вращательного движения перемещение можно характеризовать углом \( \theta \) так же, как в прямолинейном движении перемещение характеризуется расстоянием \( s \). (Более подробно перемещение при прямолинейном движении описывается в главе 3.)

Стандартной единицей измерения перемещения при вращательном движении является радиан (рад), а не градус. Полная окружность охватывает угол величиной ​\( 2\pi \)​ радиан, что равно 360°. Соответственно, половина окружности охватывает угол величиной ​\( \pi \)​ радиан, а четверть окружности — ​\( \pi/2 \)​.

Как преобразуются величины углов из градусов в радианы и обратно? Достаточно определить, сколько радиан приходится на один градус, т.е. вычислить отношение ​\( 2\pi \)​/360°. Например, величина угла 45° в радианах равна:

Аналогично, для преобразования величины угла из радианов в градусы следует определить, сколько градусов приходится на один радиан, т.е. вычислить отношение 360°/​\( 2\pi \)​. Например, величина угла ​\( \pi/2 \)​ в градусах равна:

Формулировка вращательного движения в терминах прямолинейного движения очень удобна. Напомним основные формулы прямолинейного движения, которые подробно описываются в главе 3:

Теперь для вывода аналогичных основных формул вращательного движения достаточно в формулах прямолинейного движения вместо расстояния ​\( s \)​, которое характеризует прямолинейное перемещение, подставить угол ​\( \theta \)​, который характеризует угловое перемещение. А как определяется угловая скорость? Очень просто. Угловая скорость ​\( \omega \)​ определяется аналогично, как изменение угла за единицу времени, и равна количеству радианов, пройденных за секунду:

Обратите внимание, как похоже это выражение для угловой скорости на выражение для линейной скорости:

Давайте теперь вычислим угловую скорость мяча на рис. 7.1. Он совершает полный круг, охватывающий ​\( 2\pi \)​ радиан, за 1/2 с, а значит, его угловая скорость равна:

(Величина угла, выраженная в радианах, равна отношению длины дуги окружности к длине ее радиуса. Поэтому радиан — это безразмерная величина, и ее обозначение (рад) часто опускается. Соответственно, угловую скорость принято указывать “в обратных секундах” как с-1, т.е. без указания единицы измерения углов. — Примеч. ред.)

Угловое ускорение ​\( \alpha \)​ определяется аналогично линейному ускорению:

Оно определяется как изменение угловой скорости за единицу времени и измеряется в радианах на секунду в квадрате. Если скорость за 2 с изменилась от величины ​\( 4\pi c^{-1} \)​ до величины \( 8\pi c^{-1} \), то чему равно угловое ускорение? Подставим эти численные значения в предыдущую формулу и получим:

Итак, для описания вращательного движения у нас есть следующие аналоги: для линейного перемещения ​\( s \)​ — угловое перемещение ​\( \theta \)​, для линейной скорости ​\( v \)​ — угловая скорость ​\( \omega \)​ и для линейного ускорения ​\( a \)​ — угловое ускорение ​\( \alpha \)​.

На основании этой аналогии можно легко вывести основные формулы вращательного движения (подобно основным формулам прямолинейного движения, которые подробно описываются в главе 3):

Более подробно эти выражения рассматриваются далее в главе 10 при описании момента импульса и момента силы.

Подробнее о скорости: что же это такое

Достаточно просто, не так ли? Точнее говоря (физики очень любят точность), скорость равняется изменению положения, деленному на изменение времени. Потому скорость движения вдоль оси X можно выразить следующим образом:

В реальном мире скорость может принимать очень разные формы, некоторые из них описываются в следующих разделах.

Смотрим на спидометр: мгновенная скорость

Итак, у нас уже есть общее представление о скорости. Именно ее измеряет спидометр автомобиля, не так ли? Когда вы катите по прямолинейному шоссе, все, что нужно делать, — всего лишь следить за показаниями спидометра. “Уже 140 километров в час. Пожалуй, сбросим скорость до 120”. Именно так мы часто поступаем в жизни, а иначе говоря, так мы определяем мгновенную скорость.

Движемся постоянно: равномерная скорость

А что если долгое время автомобиль едет со скоростью 120 километров в час? В физике эта скорость называется равномерной (или постоянной), а в жизни она возможна только при движении на абсолютно ровных и прямолинейных дорогах, когда долгое время можно поддерживать движение без изменения скорости.

Равномерное движение с постоянной скоростью является простейшим видом движения, поскольку оно никак не меняется.

Движемся вперед и назад: неравномерное движение

Название этого типа движения говорит само за себя: неравномерное движение означает движение со скоростью, меняющейся со временем. Именно с такой скоростью мы чаще всего сталкиваемся в повседневной жизни. Вот как выглядит уравнение изменения скорости от исходной скорости ​\( v_1 \)​ до конечной скорости ​\( v_0 \)​:

Остальная часть этой главы посвящена ускорению, которое характеризует неравномерность движения.

Жмем на секундомер и определяем среднюю скорость

Выражение со скоростями не так уж неосязаемо, как может показаться. Измерения скорости можно сделать более конкретными. Допустим, что вам хочется совершить путешествие из Нью-Йорка в Лос-Анджелес, которые находятся на расстоянии около 2781 миль друг от друга. Если предположить, на это путешествие ушло 4 суток, то какой была ваша скорость?

Скорость можно найти, если поделить пройденное расстояние на затраченное на это время:

Итак, результат 695,3 получен, но в каких единицах он выражен?

В этом выражении мили делятся на сутки, т.е. результат равен 695,3 милям в сутки. Это не совсем стандартная единица измерений и вполне естественно было бы поинтересоваться: а сколько это миль в час? Для ответа на этот вопрос нужно перевести сутки в часы, как показано в главе 2. Поскольку в сутках 24 часа, то получим следующий результат:

Итак, получен более понятный результат 28,97 миль в час. Смущает лишь столь малая величина скорости, ведь обычно машины едут со скоростью в 2-3 раза быстрее, однако среднюю скорость для всего путешествия мы вычислили, разделив все расстояния на все время, включая время отдыха.

Средняя скорость и неравномерное движение

Средняя скорость отличается от мгновенной, если только вы не движетесь равномерно, когда скорость вообще не меняется. А средняя скорость неравномерного движения, когда все расстояние делится на все время, может отличаться от мгновенной скорости.

Путешествуя из Нью-Йорка в Лос-Анджелес, вам наверняка придется провести несколько ночей в отелях, и во время вашего отдыха мгновенная скорость автомобиля равна 0 миль в час, а средняя скорость — 28,97 миль в час! Дело в том, что средняя скорость получена в результате деления всего расстояния на все время.

Средняя скорость может зависеть от фактически пройденного пути. Допустим, что, путешествуя по штату Огайо, вы решили подвезти попутчика в штат Индиана и погостить у вашей сестры в штате Мичиган. Все путешествие может иметь вид, показанный на рис. 3.3: первые 80 миль — в штат Индиана, а потом 30 миль — в штат Мичиган.

Если ехать со скоростью 55 миль в час, то для преодоления всего пути длиной 80 + 30 = 110 миль потребуется 2 часа. Но если взять расстояние по прямой между начальной и конечной точкой путешествия, которое равно 85,4 миль, то средняя скорость будет равна:

Таким образом, получена средняя скорость для расстояния от начальной до конечной точки путешествия вдоль пунктирной линии. Но если вам нужно определить скорость для каждого из двух отрезков фактически пройденного пути, то нужно измерить длину каждого из двух отрезков и разделить их на время их прохождения.

При движении с равномерной скоростью это можно сделать легко и просто, поскольку в таком случае средняя скорость равняется мгновенной скорости в любой точке пути.

Ускорение в теории относительности

Основная статья: 4-ускорение

В теории относительности движение тела с переменной скоростью вдоль мировой линии в 4-мерном пространстве-времени характеризуется определённой величиной, аналогичной ускорению. В отличие от обычного (трёхмерного) вектора ускорения, 4-вектор ускорения (называемый 4-ускорением) ai является второй производной от 4-вектора координат xi не по времени, а по пространственно-временному интервалу τ (или, что то же самое, по собственному времени) вдоль мировой линии тела:

ai=d2xidτ2=duidτ.{\displaystyle a^{i}={\frac {d^{2}x^{i}}{d\tau ^{2}}}={\frac {du^{i}}{d\tau }}.}

В любой точке мировой линии 4-вектор ускорения всегда ортогонален к 4-скорости:

uiai=.{\displaystyle u_{i}a^{i}=0\,.}

Это означает, в частности, что 4-скорости меняются не по модулю, а лишь по направлению: независимо от направления в пространстве-времени 4-скорость любого тела равна по модулю скорости света. Геометрически, 4-ускорение совпадает с кривизной мировой линии и является аналогом нормального ускорения в классической кинематике.

В классической механике значение ускорения не изменяется при переходе от одной инерциальной системы отсчета к другой, то есть ускорение инвариантно относительно преобразований Галилея. В релятивистской механике 4-ускорение является 4-вектором, то есть при преобразованиях Лоренца изменяется аналогично пространственно-временным координатам.

«Обычный» трёхмерный вектор ускорения w→{\displaystyle {\vec {w}}} (то же, что a→(t){\displaystyle {\vec {a}}(t)} в предыдущих разделах, обозначение заменено во избежание путаницы с 4-ускорением), определяемый как производная «обычной» трёхмерной скорости v→{\displaystyle {\vec {v}}} по координатному времени w→=dv→dt{\displaystyle {\vec {w}}=d{\vec {v}}/dt}, применяется и в рамках релятивистской кинематики, но инвариантом преобразований Лоренца не является. В мгновенно сопутствующей инерциальной системе отсчёта 4-ускорение — это a=(,w→).{\displaystyle a=(0,{\vec {w}}).} При действии постоянной силы ускорение точки w→{\displaystyle {\vec {w}}} уменьшается с ростом скорости, однако 4-ускорение остаётся неизменным (такой случай именуют релятивистски равноускоренным движением, хотя «обычное» ускорение при этом не постоянно).

Передвигаемся и перемещаемся

С точки зрения физики перемещение возникает при переходе какого-то объекта из точки 1 в точку 2. Попросту говоря, перемещение — это пройденное объектом расстояние. Рассмотрим, например, движущийся вдоль линейки мячик для игры в гольф, который показан на рис. 3.1. Допустим, что сначала мячик находится возле отметки 0 (схема А).

Пока что все в порядке. Допустим, что мячик сместился на новое место, например на 3 метра вправо (схема Б). В таком случае говорят, что мячик переместился, или произошло перемещение. В данном случае перемещение равно 3 метрам. В исходном положении мячик находился на отметке 0 метров, а в конечном положении — на отметке +3 метра.

В физике перемещение часто обозначают символом ​\( s \)​, т.е. в данном случае \( s \) равно 3 метрам.

Ученые любят очень подробно описывать разные ситуации. Например, исходное положение часто обозначают символом\( s_0 \)(или, в англоязычной литературе,\( s_i \) где ​\( i \)​ обозначает “initial”, т.е. исходный). А конечное положение часто обозначают символом \( s_1 \) (или, в англоязычной литературе, \( s_f \) где ​\( f \)​ обозначает “final”, т.е. конечный). Таким образом, положения на схеме А и схеме Б на рис. 3.1 выражаются символами \( s_0 \) и \( s_1 \) соответственно. А перемещение \( s \) между ними равно их разности, т.е. конечное положение минус исходное положение:

Обратите внимание, что \( s \) отрицательно!

В качестве начальной точки можно выбрать отличное от 0 положение. Например, для перехода между исходным положением на схеме А на рис. 3.1 и конечным положением на схеме В получим следующее перемещение:

Величина перемещения зависит от выбора начальной точки. В простых задачах выбор начальной точки очевиден, а как быть в более сложных случаях, например, когда движение происходит не вдоль линейки?

Разбираемся с осями

В реальном мире объекты редко движутся вдоль линеек, как мячик для гольфа на рис. 3.1. Часто движение происходит в двух или даже трех измерениях пространства. Чтобы измерить движение в двух пространственных измерениях, нужно иметь две пересекающиеся линейки, которые называются осями. Горизонтальную ось называют осью X, а вертикальную — осью Y, а при движении в трехмерном пространстве используют еще одну ось Z (если представить, что оси X и Y лежат в плоскости страницы, то ось Z как бы “торчит” из нее).

На рис. 3.2 показан пример движения мячика для гольфа в двумерном пространстве. Мячик движется из центра рисунка в верхний правый угол.

Используя оси, можно сказать, что мячик передвинулся на +4 метра по оси X и на +3 метра по оси Y. Новое положение мячика обозначается парой чисел (4; 3), где первое число относится к оси X, а второе — к оси Y, т.е. оно выражается в формате \( (x,y) \).

Чему равно перемещение? Изменение положения по оси X обозначается символом ​\( \Delta x \)​ (греческий символ ​\( \Delta \)​ произносится “дельта” и означает “изменение”) и равно: конечное положение минус исходное положение. Если мячик стартует из центра рисунка, т.е. из положения (0; 0), то изменение положения по оси X равно:

Аналогично, изменение положения по оси Y равно:

Допустим, что нужно вычислить величину суммарного перемещения по обеим осям X и Y. Иначе говоря, насколько далеко удалился мячик от исходного положения в центре рисунка? Это можно подсчитать на основе теоремы Пифагора, т.е. выполнить следующие вычисления:

Итак, величина перемещения мячика равна 5 метрам.

Измеряем скорость

В предыдущих разделах рассматривалось движение в одном или двух пространственных измерениях. Однако реальные перемещения происходят за некоторый промежуток времени, т.е. с некоторой скоростью. Например, за какое время произошло перемещение на рис. 3.1 из исходного положения в конечное положение: за 12 лет или 12 секунд?

Остальная часть этой главы посвящена измерению скорости перемещений. Аналогично измерению перемещения в пространстве, можно измерять разницу во времени между началом и концом движения, которая обычно выражается следующим образом:

Здесь ​\( t_1 \)​ обозначает конечное время, ​\( t_0 \)​ — начальное время, а их разность — количество времени, необходимого для перемещения, например движения мячика от начального к конечному положению. Когда ученые хотят узнать, насколько быстро происходит это событие, то фактически это значит, что они хотят измерить скорость.

Измерения ускорений

Используемые единицы

  • метр на секунду в квадрате (метр в секунду за секунду), м/с², производная единица системы СИ;
  • сантиметр на секунду в квадрате (сантиметр в секунду за секунду), см/с², производная единица системы СГС, имеет также собственное наименование гал, или галилео (применяется преимущественно в гравиметрии);
  • g (произносится «же»), стандартное ускорение свободного падения на поверхности Земли, равное по определению 9,80665 м/с². В технических расчётах, не требующих точности выше 2 %, часто используется приближение g ≈ 10 м/с².
Преобразования между различными единицами ускорения
м/с2 фут/с2 g см/с2
1 м/с2 = 1 3,28084 0,101972 100
1 фут/с2 = 0,304800 1 0,0310810 30,4800
1 g = 9,80665 32,1740 1 980,665
1 см/с2 = 0,01 0,0328084 0,00101972 1

Технические средства

Приборы для измерения ускорения называются акселерометрами. Они не «детектируют» ускорение непосредственно, а измеряют силу реакции (укр.)русск. опоры, возникающую при ускоренном движении. Поскольку аналогичные силы сопротивления возникают в поле тяготения, с помощью акселерометров можно измерять также гравитацию.

Акселерографы — приборы, измеряющие и автоматически записывающие (в виде графиков) значения ускорения поступательного и вращательного движения.

Значения ускорения в некоторых случаях

Значения ускорений различных движений:

Вид движения Ускорение, м/с2
Центростремительное ускорение Солнечной системы при орбитальном движении в Галактике 2,2·10−10
Центростремительное ускорение Земли при орбитальном движении вокруг Солнца 0,0060
Центростремительное ускорение Луны при орбитальном движении вокруг Земли 0,0027
Пассажирский лифт 0,9—1,6
Поезд метро 1
Автомобиль «Жигули» 1,5
Бегун на коротких дистанциях 1,5
Велосипедист 1,7
Конькобежец 1,9
Мотоцикл 3—6
Аварийное торможение автомобиля 4—6
Усэйн Болт, максимальное ускорение 8
Гоночный автомобиль 8—9
Торможение при открытии парашюта 30 (3 g)
Запуск и торможение космического корабля 40—60 (4—6 g)
Манёвр реактивного самолёта до 100 (до 10 g)
Свая после удара копром 300 (30 g)
Поршень двигателя внутреннего сгорания 3×103
Пуля в стволе винтовки 2,5×105
Микрочастицы в ускорителе (2—50)×1014
Электроны между катодом и анодом трубки цветного телевизора (20 кВ, 0,5 м) ≈7×1015
Электроны при соударении с люминофором трубки цветного телевизора (20 кВ) ≈1022
Альфа-частицы в атомном ядре ≈1027

Примечание: здесь g ≈ 10 м/с2.

Вывод

Вывод 1

В большинстве случаев ускорение направлено под некоторым углом к скорости. Составляющую ускорения, которая направлена вдоль скорости, называют тангенциальным ускорением. Тангенциальное ускорение описывает быстроту изменения скорости по модулю:

Вывод 2

Если траектория гладкая (что предполагается), то:

  • изменения направления вектора v {\displaystyle \mathbf {v} \ } дадут в проекции на касательную малую величину не ниже второго порядка по dt {\displaystyle dt\ }, которой можно поэтому пренебречь.
  • изменение длины вектора v {\displaystyle \mathbf {v} \ } будет отличаться от проекции изменения v {\displaystyle \mathbf {v} \ } на касательную тоже на величину не ниже второго порядка.

То и другое следует из того, что угол вектора v {\displaystyle \mathbf {v} \ } к касательной будет не ниже первого порядка по dt {\displaystyle dt\ }. Отсюда сразу же следует искомая формула.

Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых dt {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ }, поскольку угол отклонения этого вектора от касательной при малых dt {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector