Квантовая механика
Содержание:
Введение в квантовую механику
проблема квантового измерения
В квантовой механике волновая функция объекта описывает все измеримые свойства этого объекта. Это полное описание того, что называется квантовым состоянием объекта. Волновая функция описывается знаменитым уравнением Шрёдингера, который, по слухам, написал его во время отдыха с любовницами в ответ на брошенный ему вызов со стороны светил науки. Уравнение описывает поведение волновой функции в ответ на проявления внешней среды.
Математические детали сейчас не важны, за исключением одного: уравнение Шрёдингера линейно. Если вы сложите несколько разных решений в линейное уравнение, их сумма тоже будет решением. Это называется принципом суперпозиции и является не физическим результатом, а скорее свойством основной математической структуры в КМ. Суть в том, что существует класс волновых функций, который называется квантовыми суперпозициями, одновременно описывающие разные квантовые состояния объекта.
Давайте поставим объект в суперпозицию, измерим его и посмотрим, что получится согласно стандарту КМ. Возьмем два одинаковых мяча: красный и синий. Заставим их вращаться с двумя квантами (один квант обозначает половину единицы) углового момента (который мы называем спином). У красного мяча спин будет верхним, у синего — нижним. Квантовое состояние двух мячей до того, как они столкнутся, будет красный-верх + синий-низ. Если вы измерите спин двух мячей, вы обнаружите, что у красного мяча спин всегда +1, а у синего всегда -1, а значит сумма двух будет равна нулю
Это важно, поскольку суммарный спин системы является константой в КМ
Теперь столкнем мячи. Если их поверхности обладают свойствами, похожими на те, которые нам известны, два мяча могут передать спин один другому. Самыми очевидными результатами будут такие: ничего не изменится (красный-верх + синий-низ, что мы обозначаем как ; спин изменится (красный-низ + синий-верх, или ; спин обнулится (красный-ноль + синий-ноль, или . Поскольку может произойти любое из трех событий, до того, как мы измеряем состояние мячей, они находятся в состоянии запутанной суперпозиции. Их квантовое после столкновения и перед измерением будет + + .
(Для квантовых скептиков: если мы измерим разнонаправленные спины красного и синего мячей, теорема Белла говорит нам, что корреляция между результатами измерения будет сильнее, чем возможно в классической и вышеописанной системах. Этот теоретический результат наблюдается и экспериментально, доказывая, что спин каждого из шаров после столкновения не имеет определенного значения, пока не измеряется).
Измерим спин красного мяча после столкновения. Если он равен 1, квантовое состояние двух мячей после измерения будет — две другие суперпозиции исчезают, поскольку не согласуются с измерением. То же самое, если результат измерения -1 или 0, соответственно, квантовое состояние будет и . Любое возможное состояние, несовместимое с результатом измерения, исчезает, даже если оно существовало в исходной суперпозиции.
Основные законы квантовой механики
Принцип неопределённости Гейзенберга — где и с какой скоростью?
В 1927 году Гейзенберг сформулировал принцип неопределённости: невозможно одновременно точно измерить пространственную координату и скорость частицы. Формула:
Принцип неопределённости также связывает иные пары характеристик, например, энергию квантовой системы и момент времени, когда квантовая система обладает ей.
Подходящей аналогией является фотографирование движущегося объекта. Объект, сфотографированный с длительной экспозицией, размывается. Это демонстрирует, как движется объект, но не где он находится. Наоборот: можно определить местоположение объекта, сфотографированного с короткой экспозицией, но не то, как он движется. Однако следует понимать, что принцип неопределённости не ориентирован на наблюдателя, а показывает природу частиц.
Кот Шрёдингера — и жив и мёртв одновременно
Шрёдингер, желая показать неполноту квантовой механики при переходе от микромира к макромиру, провёл мысленный эксперимент.
Кот Шрёдингера — и жив и мёртв одновременно
Есть закрытый ящик, в котором находится живой кот и механизм: счётчик Гейгера с радиоактивным веществом, молоток и колба смертельного яда. Колба может быть разбита механизмом, приводимым в действие радиоактивным распадом. Однако распад носит вероятностный характер — 50/50. Если распад произойдёт, то молоток разобьёт колбу и смертельный яд убьёт кота. Если распада не произойдёт, то механизм не сработает и кот будет жив. Шрёдингер заключил, что пока мы не откроем ящик и не узнаем состояние кота, то он жив и мёртв одновременно.
Чистое осознание в квантовой физике
На самом деле с тем режимом восприятия, с которым мы обычно живем, мы не способны квантово управлять окружением, потому что наше обычное сознание максимально уплотнено, можно сказать заточено под классический мир.
В нас вложено много уровней сознания (мысли, эмоции, чистое сознание или душа), а они обладают разными степенями квантовой запутанности. Но в основном человек отождествлен с низшим сознанием — эго.
Эго это максимальная декогеренция, когда мы отделяемся от целостного мира, теряем с ним связь. Крайняя форма эго это эгоизм, когда отдельное сознание максимально отделяется от Единого сознания, думает только о себе.
А нужно стремиться к тому уровню сознания, где мы соединены, связаны, квантово запутанны со всем миром, с Единым.
Декогеренция сознания это видение ситуации узко, по определенной программе. Так живет большинство людей.
А рекогеренция сознания это наоборот чувственное восприятие, свобода от догм, взгляд с более высокой точки зрения, видение ситуации без ошибок. Гибкость, способность выбирать любое чувство, но не привязываться к нему.
Чтобы прийти к такому сознанию, а значит ощущать квантовый мир вокруг себя нужно две вещи: осознанность в повседневной жизни, а также постоянная практика медитации и расслабления.
Осознанность поможет нам отцепиться от постоянных привязок к материальным объектам, а значит снизить декогеренцию.
А медитация через расслабление и неделание приводит к глубокой рекогеренции сознания, отцепления от эго, выход в высшие, тонкие, недвойственные сферы бытия. Ведь внутри нас есть чистое сознание, которое соединяется с Единым, квантовым источником. Истинная йога через медитацию нацелена на открытии внутри нас этого источника.
Именно в нем присутствуют неиссякаемые источники энергии. Именно там можно найти счастье, здоровье, любовь, творчество, интуицию.
Медитация, осознанность приближают нас к квантовому сознанию. Это сознание нового, здорового, счастливого человека, понимающего квантовую физику, применяющего эти знания для улучшения своей жизни. Человек с правильным, мудрым, философским взглядом на жизнь без эгоизма.
Ведь эгоизм это страдание, несчастье, декогеренция.
Дискретность квантовой физики
Дискретность квантовой физики усложняет ее.
Все в названии физики — слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся в квантовом поле, приходит в кратных величинах некой фундаментальной энергии. Для света это ассоциируется с частотой и длиной волны света — высокочастотный свет с короткой волной обладает огромной характерной энергией, тогда как низкочастотный свет с длинной волной обладает небольшой характерной энергией.
В обоих случаях между тем полная энергия, заключенная в отдельном световом поле, целочисленно кратна этой энергии — 1, 2, 14, 137 раз — и не встретить странных долей вроде полутора, «пи» или квадратному корню из двух. Это свойство также наблюдается в дискретных энергетических уровнях атомов, и энергетические зоны конкретны — некоторые величины энергий допускаются, остальные нет. Атомные часы работают благодаря дискретности квантовой физики, используя частоту света, связанного с переходом между двумя разрешенными состояниями в цезии, которая позволяет сохранить время на уровне, необходимом для осуществления «второго скачка».
Сверхточная спектроскопия также может быть использована для поиска вещей вроде темной материи и остается частью мотивации для работы института низкоэнергетической фундаментальной физики.
Это не всегда очевидно — даже некоторые вещи, которые квантовые в принципе, вроде излучения черного тела связаны с непрерывными распределениями. Но при ближайшем рассмотрении и при подключении глубокого математического аппарата квантовая теория становится еще более странной.
Проблема квантового измерения
Насколько нам известно, ни один человек не ощущает себя в состоянии суперпозиции — мы даже не знаем, каково это чувство на вкус и цвет. Результат измерения, как описано выше, согласно нашему опыту, равен одному определенному числу.
Чтобы перевести наблюдения квантовой механики «на язык нашего опыта», стандартная КМ предполагает, что измерительные приборы и наблюдатели классические в своем поведении. Не существует суперпозиции классических измерительных приборов и наблюдателей, поэтому измерение дает нам один определенный ответ, чего мы, собственно, и ожидаем. Такое заключение вполне закономерно, но физики от этого не стали лучше спать и меньше спорить.
Проблема в том, что есть масса причин полагать, что измерительные приборы и наблюдатели не являются на самом деле классическими в своем поведении. Скорее их волновая функция в сочетании с уравнением Шрёдингера дает полное описание возможного поведения объекта.
Неклассическое поведение больших измерительных приборов было доказано в рамках квантовой механики теоремой неразрешимости. Если структура квантовой механики сохраняется для всех систем, в конце процесса измерения наблюдатель, измеряющая аппаратура и измеряемый объект находятся в квантовой суперпозиции всех состояний в соответствии с волновой функцией измеряемого объекта.
Учитывая это, проблему квантового измерения можно озвучить так: почему измерение, которое проводится большими и сложными квантовыми устройствами (включая нас самих), выдает определенный и единичный результат? Если какой-то аспект в КМ сводит процесс измерения к определенному результату, то какой именно этот аспект? Можно ли вывести его в рамках существующей квантовой теории или же ее нужно расширить?
Оригинальные понятия коллапса волновой функции и классического наблюдателя были попыткой ответить на этот вопрос, но теорема неразрешимости показала, что этого недостаточно.
Некоторые ученые предположили, что уравнение Шрёдингера должно быть изменено, чтобы включить некоторые нелинейные члены, которые будут выдавать ясные состояния во время измерения. У этих предположений существует ряд проблем — хотя бы потому, что стандартная квантовая механика работает слишком хорошо, чтобы можно было запросто изменить фундаментальное уравнение, не испортив его хорошие части.
В многомировой интерпретации Эверетта проведение измерений с различными результатами приводит к образованию множества альтернативных вселенных — по одной для каждого возможного результата. Это позволяет решить проблему измерения: наблюдатель распадается вместе с измерительным прибором, поэтому не замечает кратности. Но в таком случае вам придется поверить в то, что вылет фотона из атома рождает новые вселенные…
Декогеренция, которая является следствием взаимодействия квантовой системы с ее окружением, может приводить к тому, что суперпозиционные состояния волновой функции неспособны взаимодействовать друг с другом, в результате чего их вероятности становятся независимыми. Некоторые полагают, что именно в этот момент волновая функция коллапсирует, другие — что это вообще не имеет никакого отношения к проблеме измерения, поскольку все вокруг создает суперпозицию, запутываясь с окружающей средой.
С таким же успехом физики могли отвечать наугад.
Квантовый Парадокс электрона. Постулаты и парадоксы квантовой физики
В квантовом мире, в мире с очень малой размерностью, размерами – все не так, как в современном макромире. И этот мир элементарных частиц придумали сами ученые. Ввели постулаты, ограничения и закону, по которым этот мир существует. Может быть, пока человек не способен понять этот мир? А не способен по причине того, что научные изыскания, модели, теории завели в некий тупик (или ложный путь)?Многое то, что детектируют приборы необъяснимо с точки зрения логики простого обывателя. Например, корпускулярно-волновой дуализм, когда частицы могут быть и волной и частицей в зависимости от условий опыта или даже от простого факта наблюдения за этим опытом стороннего наблюдателя. Да, наблюдатель может даже влиять на исход опыта и на то, как поведут себя частицы.Опыт Юнга — эксперимент, проведённый Томасом Юнгом и ставший экспериментальным доказательством волновой теории света. Результаты эксперимента были опубликованы в 1803 году.Я не буду нагромождать пост заумными формулами и текстами, постараюсь показать некоторое как можно проще.На заре изучения квантового мира были введены постулаты, т.к. по всем классическим законам механики, частицы микромира не должны себя так вести. Самые известные постулаты (школьный курс) – постулаты Бора :Противоречия с классической физикойЗдесь немного подробнее поставлены и другие эти вопросы:Один из них: почему заряды электрона и протона равны (по величине), но масса электрона в 1836 раз меньше массы протона?Может быть, мы чего-то не знаем, если такое происходит?Принцип неопределенности Гейзенберга:Если вкратце:Есть постулаты и в Специальной теории относительности:Т.е. для того, чтобы физикам хоть что-то объяснить в квантовом мире, пришлось ввести эти допущения, запреты и «мы так решили». Иначе понятно, что там ничего не понятно. Не объясняя, почему именно так – ученые ввели свои запреты и правила, законы по которым должен существовать микромир.Вот еще один «закон» физики света:Дифракция света – огибание волной преградыВопрос: почему при солнечных затмениях мы видим на поверхности земли темное пятно, тень от Луны? По законам физики, свет должен огибать препятствие-Луну и мы должны видеть не прохождение пятна, а дифракционные кольца от Луны.Все это можно объяснить, если принять одно допущение – если мир анизотропен, т.е. законы физики и иных земных наук не равны для всех размерностей и участков Вселенной. Вблизи земли они – одни, у Солнца – иные, в микромире – третьи:Если это не так, то уже давно пора вернуться к моделям эфира и начать с этих канонов. Иначе, все эти постулаты заведут нас в еще больший тупик.
Кот Шрёдингера и макроскопические суперпозиции
Кот Шрёдингера
Суть эксперимента в том, что условия точно описываются квантовой механикой (распадется ли радиоактивный атом?), а сам он представлен классической проблемой (жив кот или мертв?). Мы хотим посмотреть, на каком этапе результат эксперимента перестанет находиться в компетенции КМ и станет обычным классическим «да» или «нет».
Основной аргумент таков: пока коробка не откроется, кот будет находиться в квантовой суперпозиции мертвого и живого кота. С другой стороны, если кот выступает в роли наблюдателя, он как минимум будет знать, что он жив. (Осознание котом того факта, что он умер, зависит от существования загробной жизни — и такое предлагается в квантовой механике). Обсуждение тянется бесконечно, вариантов ответов — масса.
В многомировой интерпретации судьба кота не так печальна. Когда коробка открывается, вселенная расщепляется на две: в одной кошка живет дальше, в другой нет.
Этот вопрос очень важен, поскольку его можно проверить экспериментально.
Крупнейшей системой, которая была успешно введена в состояние квантовой суперпозиции, является квантовый микрофон весом в нанограмм (10 триллионов атомов) объемом около 450 кубических микрон. Намного меньше кота, но больше того, что связывают с обычными атомными и субатомными взаимодействиями — то есть тем, что обычно разбирает квантмех. Активное развитие создания квантовой суперпозиции больших объектов, наверное, основная причина того, почему ученые позитивно смотрят на макроскопические суперпозиции. Если идея работает на практике, со временем она найдет все больше и больше сторонников.