Крепче них только алмаз: топ-рейтинг самых прочных металлов в мире, по мнению экспертов zuzako

5 самых редких металлов в мире

Редкие металлы бывают двух основных типов: те, которые встречаются в природе и те, которые получают в лабораторных условиях. Приходящее многим на ум золото далеко не самый редкий и труднодоступный металл в мире, а всего лишь обладающий весомой исторической и финансовой ценностью. Однако вовсе не его грамм стоит миллионы долларов, и не на его добычу тратятся годы.

Самый редкий металл в мире

  • 1
  • 38 Голосов
  • Поддержите лидера!

Лидер рейтинга

Калифорний (Cf)

Именно калифорний является самым редким и одновременно дорогим металлом в мире. На его производство уходит от 1,5 до 8 лет и в начале XXI века в мире существовало не более 10 г калифорния. И вряд ли его запасы резко возрастут. Ведь производят этот металл, затрачивая несколько десятков миллионов долларов на процесс добычи нескольких граммов, всего две лаборатории в мире.

Одна находится в России, а другая — в США. Серебристо-белый калифорний вовсе не тот металл из которого можно заказать колечко. Он радиоактивен. Зато с применением изотопов калифорния ученые проводят очень важные эксперименты.

Он используется в лучевой терапии рака мозга и шеи, рентгенографии самолетов, выявляющей усталость металла, при калибровке приборов, работающих в ядерных реакторах.

  1. 2
  2. 26 Голосов
  3. Достоин первого места?

Осмий (Os)

Один из металлов платиновой группы, как и все они являющийся благородным и драгоценным, серебристо-голубой осмий является самым плотным простым веществом на земле. В природе его можно обнаружить в комплексных рудах.

Осмий187 — редкий изотоп этого металла, чья стоимость составляет около 10 тысяч долларов за грамм. На его производство уходит порядка 9 месяцев.

Сам осмий, обладающий чрезвычайно высокой температурой плавления, используется для упрочения платиновых сплавов для электронной промышленности. Изотоп же необходим химикам, инженерам и медикам.

  • 3
  • 20 Голосов
  • Достоин первого места?

Галий (Ga)

Удивительный металл галлий очень любят фокусники. Ведь он может расплавиться в кружке с теплой водой или даже в руках. Если же его поместить в серную кислоту, галлий начнет пульсировать.

Этот редкий и дорогой серебристо-голубой металл крайне востребован промышленностью.

Термометры из кварца именно с галлием внутри используются для измерения высоких температур, на основе галлия делаются металлические клеи, арсенид этого металла необходим для производства некоторых лазеров и сверхвысокочастотной электроники.

  1. 4
  2. 20 Голосов
  3. Достоин первого места?

Тантал (Ta)

Тантал — дорогой и редкий металл. За 1 килограмм тантала, в зависимости от его чистоты, можно получить от 500 до 4500 долларов.

Именно из-за трудности получения в чистом виде этот серый металл и назван в честь героя греческих мифов, вечно пытающегося достать хоть немного воды и еды.

Кроме производства электронных приборов и химической промышленности, в тантале очень нуждается медицина. Этот металл уникален своей биосовместимостью. Протезы из него воспринимаются организмом «как родные».

  • 5
  • 16 Голосов
  • Достоин первого места?

Рений (Re)

Рений – один из элементов, чье существование предвидел Д. И. Менделеев. Впервые 2 мг рения были выделены в 1926 году. Этот серебристо-белый металл получают при переработке молибденита. Следует обработать несколько сотен килограммов, чтобы получить один грамм этого редкого металла. Рений востребован в производстве реактивных двигателей, турбинных лопаток, сверхточных приборов.

6

Хотите добавить еще пункт? Добавляйте!

Основные свойства лития

Плотность лития составляет всего 0,543 грамма на сантиметр кубический. Металл входит в щелочную группу, которая характеризуется очень высокой химической активностью. Поэтому в природе литий образует сложные многоэлементные соединения, входящие в состав горных пород. При этом литий является самым неактивным щелочным металлом, так что достаточно устойчиво проявляет себя после выделение в чистом виде. Физические свойства самого легкого металла на Земле выглядят следующим образом: в нормальных условиях серебристо-белый металл, мягкий (можно резать ножом), ковкий и пластичный. Температура плавления — 181 градус по Цельсию. Атомная масса — 6,941 грамм на моль.

Химические свойства характерны для металлов щелочной группы. Но литий, в отличие от остальных щелочных элементов при комнатной температуре медленно реагирует с кислородом и другими веществами. Зато при нагревании вступает в реакцию с газами, кислотами и основаниями. При нагревании до 300 градусов по Цельсию литий самовоспламеняется и горит красно-синим пламенем. В отличие от остальных элементов щелочной группы покрывается устойчивой оксидной пленкой и перестает реагировать с кислородом.

Литий не хранят в керосине, так как из-за малой плотности он плавает на поверхности. Для его длительного хранения используют петролейный эфир, парафин, газолин или минеральное масло. В качестве емкости применяют жестяные банки с герметично закрывающимися крышками. Литий является токсичным веществом и при попадании на открытые участки кожи вызывает зуд, раздражение и ожоги, поэтому при работе с ним необходимо использовать специальную защитную одежду. Пары лития обжигают верхние дыхательные пути, так что нужно позаботиться и о защите органов дыхания.

Твердость металлов

Твердость
– свойство металла сопротивляться
внедрению в него другого более твердого
тела. Для определения твердости не
требуется изготовления специальных
образцов, испытания проводятся без
разрушения металла.

Твердость
металла определяют прямыми и косвенными
методами: вдавливанием, царапанием,
упругой отдачей, магнитным.

При
прямых методах в металл вдавливают
твердый наконечник (индентор) различной
формы (шарик, конус, пирамида) из закаленной
стали, алмаза или твердого сплава. После
снятия нагрузки на индентор в металле
остается отпечаток, который и характеризует
твердость.

Метод
Бринелля.
В плоскую поверхность металла вдавливается
стальной закаленный шарик диаметра 10
мм (рисунок 2). После снятия нагрузки в
металле остается отпечаток (лунка).
Диаметр отпечатка d измеряют специальным
микроскопом с точностью 0,05 мм. На практике
пользуются специальной таблицей, в
которой диаметру отпечатка d соответствует
определенное число твердости НВ.

Диаметр
шарика D

и нагрузку P

устанавливают в зависимости от твердости
и толщины испытуемого металла. Например,
для стали и чугуна нагрузка Р

= 3000 кг; D

= 10 мм. Твердость технически чистого
железа по Бринеллю равна 80 – 90 единиц.

а
– по Бринеллю; б – по Роквеллу

Рисунок
2 — Схема испытания твердости

Метод
Бринелля не рекомендуется применять
для металлов с твердостью более НВ 450,
так как шарик может деформироваться и
в результате получится искаженный
результат. Этот метод используется в
основном для измерения твердости
заготовок и полуфабрикатов из
неупрочненного металла.

Метод
Роквелла.
Твердость определяют по глубине
отпечатка. Индентором служит стальной
закаленный шарик диаметра 1,58 мм для
мягких металлов или алмазный конус с
углом при вершине 120º
для твердых и сверхтвердых (более HRC
70) металлов (рисунок 2, б).

Шарик
и конус вдавливаются в металл под
действием двух нагрузок – предварительной
и основной. Общая нагрузка равна их
сумме. Предварительная нагрузка
принимается одинаковой для всех металлов
(10 кг). Перед началом испытания большая
стрелка твердомера выставляется на «0»
шкалы индикатора, и затем включается
основная нагрузка – большая стрелка
перемещается по шкале индикатора и
показывает значение твердости.

При
вдавливании стального шарика нагрузка
составляет 100 кг, отсчет твердости
производится по внутренней (красной)
шкале индикатора, твердость обозначают
НRВ. При вдавливании алмазного конуса
твердость определяется по показанию
стрелки по внешней (черной) шкале
индикатора. Для твердых металлов основная
нагрузка составляет 150 кг. Это основной
метод измерения твердости закаленных
сталей. Обозначение твердости – НRC.

Для
очень твердых, а также тонких материалов
нагрузка принимается равной 60 кг.
Обозначение твердости – НRА.

Метод
определения твердости по Роквеллу
позволяет испытывать мягкие и твердые
металлы, при этом отпечатки от шарика
или конуса очень малы, поэтому этим
методом можно измерять твердость и
готовых деталей. Поверхность для
испытания должна быть шлифованной.
Измерения выполняются быстро (в течение
30 – 60 с), не требуется никаких вычислений,
так как значение твердости снимается
по шкале индикатора твердомера.

Метод
Виккерса.
В испытуемую поверхность (шлифованную
или полированную) вдавливается
четырехгранная алмазная пирамида под
нагрузкой 5, 10, 20, 30, 50 или 100 кг. В металле
остается квадратный отпечаток. Специальным
микроскопом твердомера измеряют
диагональ отпечатка (рисунок 3).

Рисунок
3- Схема испытания твердости по
Виккерсу

Зная
нагрузку на пирамиду и диагональ
отпечатка, по таблицам определяют
твердость металла НV.

Метод
универсальный.
Его можно использовать для определения
твердости деталей малой толщины и тонких
поверхностных слоев большой твердости
(после азотирования, нитроциментации
и т. п.).Чем тоньше металл, тем меньше
должна быть нагрузка на пирамиду, однако
при большой нагрузке результат получается
точнее.

Использование металлов в повседневной жизни началось на заре развития человечества, и первым металлом являлась медь, поскольку является доступной в природе и легко поддается обработке. Недаром археологи при раскопках находят различные изделия и домашнюю утварь из этого металла. В процессе эволюции люди постепенно учились соединять различные металлы, получая все более прочные сплавы, пригодные для изготовления орудий труда, а позже и оружия. В наше время продолжаются эксперименты, благодаря которым можно выявить самые прочные металлы в мире.

Самый твердый металл

Первым металлом, который человечество стало использовать для хозяйственных целей, была медь: легкая в обработке, она встречается в природе довольно часто, поэтому неудивительно, что именно она послужила материалом для первых металлических ножей и топоров.

Немного позже люди обнаружили, что, добавляя в медь олово, можно получить значительно более прочный сплав – бронзу.

Средневековые алхимики, помимо поисков философского камня, экспериментировали и со сплавами, стараясь определить, какой самый твердый металл в мире, но все опыты подтверждали: сплавы прочнее чистого металла, каким бы он ни был. А как же обстоит дело сегодня?

статьи

Все наиболее прочные «чистокровные» металлы были открыты человеком довольно поздно. Причина проста: они встречаются куда реже, чем привычные для нас железо или медь.

Существует несколько методов определения твердости материалов: по Моосу, по Виккерсу, по Бринеллю и по Роквеллу, данные которых немного разнятся. По шкале Мооса, например, железо имеет значение лишь 4, а наибольшая твердость у алмаза – 10.

А десятка металлов, чья твердость от 5 единиц и выше, выглядит так:

  • иридий – 5;
  • рутений – 5;
  • тантал – 5;
  • технеций – 5;
  • хром – 5;
  • бериллий – 5,5;
  • осмий – 5,5;
  • рений – 5,5;
  • вольфрам – 6;
  • уран – 6.

Большинство из этой «великолепной десятки» встречаются в природе чрезвычайно редко (например, годовая добыча рутения в мире составляет около 18 тонн, а рения – около 40 тонн) или обладают радиоактивностью, затрудняющей их применение в быту. И все они имеют весьма значительную стоимость, за исключением, пожалуй, хрома. Именно высокая твердость и относительно низкая цена на этот металл сделали его популярным при изготовлении прочных сплавов.

Использование самых твердых металлов

Вследствие того, что большинство самых твердых металлов встречаются в природе очень редко, их прочностные качества остаются невостребованными или востребованными крайне ограниченно, например, для покрытия узлов и частей механизмов, подвергающихся наибольшей нагрузке.

А вот применять при изготовлении инструментальной стали или брони добавки из рения или рутения, согласитесь, глупо. Этих металлов просто не хватит на все. Поэтому хром и оказался очень востребованным.

Он является важнейшей легирующей добавкой, улучшающей как прочность, так и коррозионную стойкость сплавов.

Некоторые из твердых металлов в очень небольших количествах используются в медицине, при создании космической техники, в качестве катализаторов и в некоторых других областях. В этих случаях востребованной оказалась не их твердость, а другие сопутствующие качества.

Вольфрам, например, как самый тугоплавкий металл на планете (температура плавления +3422 по Цельсию), нашел применение при создании нитей накаливания осветительных приборов.

В небольших количествах он добавляется в сплавы, которые должны выдерживать действие высокой температуры длительное время – например, в металлургической промышленности.

Уран

Уран, как и вольфрам, – самый твердый металл на Земле, но уран значительно больше распространен на нашей планете, поэтому нашел куда более широкое применение.

И его радиоактивность не стала этому помехой. Самое известное применение урана – в качестве «топлива» в атомных электростанциях.

Кроме того, он используется в геологии для определения возраста горных пород и в химической промышленности.

Прочностные свойства и высокий удельный вес урана (он в 19 раз тяжелее воды) пригодились при создании бронебойных боеприпасов. В этом случае в ход идет не чистый металл, а его обедненная разновидность, почти полностью состоящая из слаборадиоактивного изотопа уран-238.

Тяжелые сердечники из такого металла отлично пробивают даже хорошо бронированные цели.

Насколько остаточные явления применения подобных боеприпасов вредят окружающей среде и человеку, достоверно пока не известно, поскольку статистического материала по данному вопросу накоплено слишком мало.

Где применяют литий?

Широко этот металл используется в сплавах. Например, когда идет процесс легирования алюминия, добавляет литий, что позволяет снизить плотность и улучшить степень упругости сплава. При изготовлении щелочных аккумуляторов применяют гидроксид лития. Наверняка, многим из вас знаком такой термин, как «литий-ионная батарея».

Керамика на основе силиката и алюмината лития используется в металлургической промышленности и для изготовления военной техники. Солями лития в медицинской сфере благополучно лечат заболевания, связанные с психическими расстройствами, так как карбонат лития обладает способностью стабилизировать человеческое настроение.

Текстильная, фармацевтическая и пищевая промышленности применяют для изготовления определенных товаров соединения лития. В сочетании с окислителями металл применяют для производства топлива для ракет. Нитрат лития просто необходим для создания пиротехнических средств. Оптическая отрасль пользуется фторидом лития. Из данного металла даже производят стекло, которое имеет определенный сорт.

Свойства металла

Почему специалисты по изготовлению и ремонту украшений ставят золото на первое место? В первую очередь, это связано с превосходной пластичностью: из 1 грамма металла можно вытянуть проволоку длиной до 3-х километров, слитки золота проковываются в листы, толщина которых измеряется в десятитысячных долях миллиметра. Этим золотом покрыты купола храмов, называют его сусальным. На вид оно довольно интересное: на просвет дает сине-зеленый оттенок.

Чистое золото может раствориться в «царской водке». Так называют смесь из двух концентрированных кислот: азотной и соляной. Самый пластичный металл в таблице находится под номером 79, температура плавления – 1064 °С, плотность составляет 19,32 г/см3. По теплопроводности и электрическому сопротивлению золото уступает только серебру и меди.

Золото в чистом виде слишком мягкое, поэтому ювелирные украшения делают, как правило, из сплавов. Чаще всего к золоту добавляют серебро или медь. Задумывались ли раньше, что означает «проба» на украшениях? Это содержание золота в чистом виде в тысячных долях. 999 проба считается чистым золотом.

Ножевой ликбез: самая твердая сталь в мире

Возможно на вполне увлечения ножами, вы начали разбираться в типах сталей, характеристиках и особенностях. Однако, многие представители ножевого сообщества считают, что самыми твердыми сплавами являются инструментальные порошковые сплавы американского или европейского производства. Но это не так.

Давайте же вместе найдем ответ на вопрос, который заботит многих из нас – что является самой твердой сталью, известной человечеству? Короткий ответ – нитинол, также известный как Ni-Ti-Nol.

Ножи из этого сплава высоко ценятся среди известных коллекционеров. Не только благодаря своей твердости, но и за счет способности приобретать яркую и непредсказуемую окраску в процессе термической обработки.

Нитинол, также известный как Ni-Ti-Nol, был впервые обнаружен еще в 1959 году учеными Уильямом Булером и Фредериком Вангом в лаборатории военно-морских сил. Сокращение Ni-Ti-Nol означает “лаборатория никель-титановых сплавов”.

Булер и Ванг искали сверхупругий сплав для носовых конусов ракет, который был бы гибким при экстремальных температурах, но после охлаждения вернулся бы в свою первоначальную форму. Их усилия увенчались успехом. Но полученный ими прочный сплав был настолько сложен в обработке, что не использовался в течение долгого времени.

Интерес к этому металлу пришел много лет спустя и, как водится, “оттуда откуда не ждали”. Угадайте с одного раза, кого может заинтересовать высокотвердый и редкий сплав, который дает яркий и непредсказуемый узор в процессе термической обработки?

Ножевой дизайнер Дуэйн Двайер из Strider Knives заинтересовался нитинолом еще в 2005 году, когда искал сплав сверхтвердых металлов, который не ржавел бы. Он обратился к металлургу и другу Скотту Деванне, вице-президенту по технологиям SB Specialty Metals, и поинтересовался возможностью производства нитинола с использованием технологии, которая никогда не применялась.

Вскоре после этого Скотт познакомил Дуэйна с Эриком Боно, металлургом и производителем ножей, который также интересовался нитинолом, и они втроем начали изучать возможности создания клинков из этого сплава.

Обладая знаниями и опытом в области металлургии, Боно в 2006 году разработал рабочий вариант сплава, получивший название “SM-100”, в виде порошкового металла. Еще несколько лет ушло на рафинирование сплава и процессов, и в 2009 году Боно и его деловой партнер Фред Йолтон создали компанию Summit Metals LLC для производства SM-100.

С тех пор SM-100 (60% никеля и 40% титана), который компания продает под названием “HIPTiNite”, завоевал интерес не только у ножевой промышленности, но и у американского космического агентства NASA и у представителей различных команд Формулы-1.

Запатентованный и брендированный сплав SM-100 нитинола, как и его предшественник, чрезвычайно прочен и очень тяжело поддается обработке. Например, одна шлифовальная лента может использоваться для шлифовки нескольких ножей из нержавеющей стали, однако для одного ножа из сплава SM-100 требуется несколько лент. Как правило, шесть и более лент.

Естественно, что работа с таким сплавам доступна только небольшому количеству найфмейкеров. Изготовленные и продаваемые в небольших количествах ножи из SM-100 стоят недешево. Если добавить к этому стоимость ремней и дополнительное время на грамотную обработку материала, то стоимость одного ножа, как говорится, улетает в космос. По словам создателей сплава, нож из SM-100 можно бросить в соленую морскую воду и через 50 лет вы не найдете на нем ни капли коррозии.

Во время разработки SM-100 Боно обнаружил, что он может быть окрашен в теплые оттенки, превращаясь в изысканную радугу цветов. Благодаря содержанию титана, SM-100 окисляется при термической обработке, как и другие сплавы, содержащие титан, но процесс достижения цветовых эффектов совершенно иной. Однако, создатели уверяют что дело не только в высокой температуре. Боно уверен, что магия происходит во время процесса термообработки, в котором он допускает попадание небольших воздушных пузырьков на поверхность ножа. Перед термообработкой клинки обматываются фольгой, под которой сознательно оставляются воздушные каналы.

При термической обработке на клинке возникают различные цветовые сочетания в зависимости от содержания кислорода на определенных участках. Учитывая относительную новизну этого сплава, будем надеяться, что мы еще о нем услышим и, может быть, даже увидим в ближайшее время на территории Российской Федерации.

Как определяется самый крепкий металл: вопрос через призму физики

Один из основополагающих вопросов – по какому признаку судить силу металлического вещества. Слово «крепкий» лишь косвенно дает понять, на сколько вещество соответствует представлениям человека в отношении прочности.

Прочность в физике – это способность внутренней структуры элемента противостоять внешнему давлению за счет созданного напряжения. Чем оно выше, тем больше элемент способен противостоять природным/искусственным факторам влияния. Детальнее о параметрах для вычисления «крепости» металла расскажет таблица ниже.

Параметр
Описание
Популярность метода (из 5 ★)
Шкала Мооса Специальная десятибалльная шкала по твердости, в основе которой лежат минералы. Используется для приблизительной оценки твердости путем нанесения царапин. В зависимости от глубины повреждения, делается вывод о количестве присваиваемых баллов элементу. Эталоном абсолютной твердости в таблице считается алмаз с показателем в 1 600 баллов. ★★★★
метод Шора Часто способ называют также методом «отскока». Хорошо себя показывает при исследовании металлических элементов. Суть – измерять высоту отскока бойка от испытуемого образца. Боек перемещается по трубке склерометра, а на его конце размещен мелкий алмаз. Метод не дает сверхточных значений из-за влияния вторичных параметров (толщина материала, шероховатость и так далее), но в промышленности вариант определения твердости металла более чем приемлем. ★★★
Метод Виккерса Официально признанный метод определения твердости металлических элементов + их сплавов. Имеется регламентация по ГОСТ 2999-75 и даже ISO 6507. Принцип измерения – вдавить в металл пирамидальной формы шип с алмазным напылением. Углы пирамиды между напротив лежащими гранями на уровне 136 градусов. Ключевыми измерительными показателями является прилагаемое давление и тайминг по выдержке от 12 до 16 секунд. ★★★★
Метод Роквелла Один из простейших методов просчета твердости металлов и прочих элементов таблицы Менделеева, поддающихся физической обработке. Суть схожа с методов Виккерса – в пластину определённой толщины вдавливается наконечник с алмазной головкой при одинаковом уровне нагрузки. Цифровые приборы Роквелла имеются у 80% технологов, заведующих металлургийными цехами, и отделами, связанными с обработкой черных/цветных металлов. ★★★★★
Метод Бринелля Метод относится к основным в области физики по отношению к выявлению уровня твердости материалов, в том числе чистых металлов и сплавов. По сути – это еще одна разновидность шкалы вдавливания. Образец подносят к индентору (шарики из сплавов твёрдых металлов), вдавливают на протяжении 3-7 секунд, и удерживают на пиковом значении давления до 15 секунд. После того, как материал убрали, производятся замеры диаметра вогнутой области на месте отпечатка. Расчёты производятся оп одному из 2 способов – восстанавливаемый или невосстанавливаемый отпечаток. ★★★★★
Модуль Юнга Это уже не метод, а физическая величина, являющаяся модулем упругости по продольной. То есть, на сколько сильно металлический элемент способен противостоять растяжению/сжатию в процессе деформации упругого типа. Величина измеряется в ньютонах/метр квадратный, либо через Паскали. ★★★★
Предел текучести Параметр относят к механической характеристике по металлическим веществам. Показываемое значение – это напряжение, при котором последующий процесс деформирования протекает без действия внешней нагрузки. Хорошо себя показывает с мягкими металлами. Измеряется в Паскалях. ★★★
Предел прочности Еще одна величина, основанная на механическом напряжении. Показывается пиковая допустимая нагрузка на вещество, после преодоления которой происходит разрушение кристаллической решетки материала. Выделяют 2 классификации предела прочности – статистический/динамический и на сжатие/растяжение. ★★★

Основным источником металлов является руда, встречающаяся в природе. Процесс имеет массу технологических особенностей, но, если говорить вкратце, путь твердого химического элемента проходит 3 больших этапа – поиск месторождения, добыча руды, и в конце извлечение металлических частиц с дальнейшей обработкой (плавка, прессовка, химические реакции и так далее).

Физические химические свойства

Литий — самый легкий металл; плотность (т-ра 0° С) 0,539 г/см³ tпл 180,54° С,tкип1327° С; температурный коэфф. линейного расширения 5,6 • 10 град ; коэфф. теплопроводности (т-ра 0° С) 0,17 кал/см • сек • град; теплоемкость (т-ра 0° С) 0,79 кал\г — град. Металлический литий обладает высокой электропроводностью.

Удельное электрическое сопротивление (т-ра 0° С)  8,12 мком. Металлический литий парамагнитен, соединения его диамагнитны. Пары Л. в основном одноатомны, окрашены в ярко-красный цвет, летучие соединения Л- окрашивают пламя горелки в карминово-красный цвет. Литий— мягкий металл, в холодном состоянии легко режется ножом.   Отличается  пластичностью и вязкостью,  легко  протягивается через фильеры, прокатывается в ленту.

Твердость по Моосу — 0,6 (тверже др. щелочных металлов); давление истечения (т-ра 15—20° С) 1,7 кгс/мм2]    модуль    упругости    500 кгс/мм2; предел прочности на растяжение  11,8  кгс/мм²;  относительное удлинение 50—70%. Металлический Л. на воздухе покрывается темно-серым  налетом — слоем  продуктов взаимодействия с азотом, кислородом и влагой воздуха. Состав такого слоя зависит от чистоты самого Л., состояния его поверхности, т-ры окружающей среды и влажности.

Если влажность   воздуха   не   превышает 80%, литий медленно реагирует с азотом, образуя нитрид Li3N, и лишь частично окисляется. В более влажном воздухе образуется в основном гидроокись LiOH. Т-ра вспышки технического Л. 200° С, а рафинированного 640° С. Л. горит с образованием окиси Li2О.

С сухим кислородом при низкой т-ре не реагирует. Взаимодействие литий с водой происходит более спокойно по сравнению с др. щелочными металлами — без плавления и самовозгорания с образованием гидроокиси LiOH и выделением водорода.    При    непосредственном взаимодействии расплавленного металла с водородом получается гид-pud LiH.

С кислородом литий образует окись Li2O и перекись Li2O2 (косвенным путем). С азотом взаимодействует при т-ре 250—460° С с образованием нитрида Li3N. При взаимодействии с галогенами дает галогениды LiF, LiCl, LiBr и Lil. Известно несколько халькогенидов — соединений Л. с серой, селеном и теллуром. Нагревание лития с серой приводит к получению сульфида Li2S — зеленовато-желтого     кристаллического вещества.

При действии элементарного селена на раствор металлического Л. в жидком аммиаке при т-ре — 33° С   выделяется   аммиакат селенида Л., к-рый при нагревании в вакууме при т-ре 150° С переходит в селенид Li2Se — кристаллы красно-коричневого цвета. С теллуром Л. образует бесцветные кристаллы теллурида Li3Te. С углеродом литий при нагревании дает карбид Li2C2 — бесцветные хрупкие кристаллы.

1.

Рейтинг самых прочных металлов в мире возглавляет именно иридий – серебристо-белый, твердый и тугоплавкий металл, который относится к платиновой группе. В природе высокопрочный элемент встречается крайне редко, и часто входит в соединение с осмием. Из-за своей природной твердости он плохо поддается механической обработке и обладает высокой стойкостью к воздействию химический веществ. Иридий с большим трудом реагирует на воздействие галогенов и перекиси натрия.

Этот металл играет важную роль в повседневной жизни. Его добавляют к титану, хрому и вольфраму для улучшения стойкости к кислым средам, применяют при изготовлении канцелярских принадлежностей, используют в ювелирном деле для создания ювелирных изделий. Стоимость иридия остается высокой из-за ограниченного присутствия в природе.

Перед тем, как выяснить, какому элементу из периодической таблицы Менделеева присвоено звание «самый пластичный металл», нужно четко понимать, что же такое пластичность. Это одно из физических свойств, связанных со строением металла.

Пластичность – это способность принимать новую форму, при этом не вызывая разрыв ионных связей. На практике результатом пластичности является хорошая ковкость, благодаря чему металлы могут использоваться в промышленности, медицине, электротехнике и хозяйстве. Из 126 элементов периодической таблицы, золото признано самым пластичным металлом. Благодаря сегодняшним технологиям его можно вытянуть в тончайшую нить, которая не будет заметна человеческому глазу.

Сплав магния и наночастиц для сверхлегких самолетов

Разработанный на основе магния и кремния металл взял лучшие свойства от своих «родителей»: плотность и легкость — от магния, твердость — от кремния. Совместить эти качества в одном материале удалось благодаря особой технологии производства — карбидокремниевые наночастицы не смешиваются с магнием, а распыляются в него. Именно поэтому готовый металл прочный и пластичный, но одновременно устойчив к воздействию высоких температур.

Исследователи рассчитывают, что их изобретение найдет применение в самолето- и автомобилестроении, также материал планируют использовать в производстве медтехники и электроники.

Так выглядит поверхность нового металла под микроскопом.

Передовые технологии: что еще легче лития?

Наука не стоит на одном месте, даря промышленности все более уникальные технологии. Так ученые получили металл, который гораздо легче по весу, чем литий. Такой металл получил название «микролаттис». Благодаря его невероятной легкости можно положить его на одуванчик, а растение при этом не деформируется.

Несмотря на свою легкость, микролаттис может выдерживать огромные нагрузки, а также восстанавливать первоначальную форму при нанесении ударов. Также материал легче полистирола в сто раз. При этом прочность его на высоте. Благодаря таким характеристикам металл используется в различных сферах – автопромышленность, аэрокосмическая промышленность, производство электродов для батарей и т.д.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector