Топ 21 самых крепких и прочных материалов

Самое тяжёлое вещество

Если вы думали, что самое тяжёлое вещество на Земле — это алмазы, это была хорошая, но неточная догадка. Это технически созданный алмазный наностержень. Это фактически совокупность из алмазов нано-масштаба, с наименьшей степенью сжатия и самое тяжёлое вещество, известное человеку. На самом деле его не существует, но что было бы весьма кстати, так как это означает, что когда-нибудь мы могли бы покрыть наши машины этим материалом и просто избавиться от нее, когда произойдёт столкновение с поездом (нереальное событие). Это вещество изобрели в Германии в 2005 году и, возможно, его будут использовать в той же самой степени, как и промышленные алмазы, исключая то обстоятельство, что новое вещество более устойчивое к износу, чем обычные алмазы.

Диборид рения (ReB2) — твердость 48 ГПа

Многие исследователи ставят под сомнение вопрос, может ли этот материал причисляться к материалам сверхтвердого типа. Это вызвано весьма необычными механическими свойствами соединения.

Послойное чередование разных атомов делает этот материал анизотропным. Поэтому измерение показателей твердости получаются разными при наличии разнотипных кристаллографических плоскостей. Таким образом, испытаниями диборида рения при малых нагрузках обеспечивается твердость в 48 ГПа, а при увеличении нагрузки твердость становится намного меньше и составляет приблизительно 22 ГПа.

Топ-10 самых тяжелых металлов в мире

Предлагаю ознакомиться с элементами согласно их рейтингу.

Тантал

Считается редким и не очень тяжелым металлом, он обладает плотностью 16,65 г/см³. Его используют хирурги – он практически не поддается разрушению и ржавчине, легок в обработке.

Уран

Плотность урана – 19,07 г/см³. Его основное отличие от собратьев – природная радиоактивность. В процессе трансформации, которые претерпевают атомы урана, вещество превращается в другой излучающий элемент. Цепочка превращений состоит из 14 этапов, один из них – преобразование в радий, последняя стадия – образование свинца. Правда, для полного перехода урана в свинец понадобится не один миллиард лет.

Вольфрам

Вольфрам (19,25 г/см³) в шутку называют идеальным кандидатом для подделки золотых слитков. Это самый тугоплавкий материал, температура плавления приближена к фотосфере Солнца – 3422 °C. Поэтому он лучше всего подходит для спиралей в лампах накаливания.

Золото

Плотность золота – 19,3 г/см³. Мягкое, тягучее, обладающее хорошей тепло- и электрической проводимостью, оно не боится химического воздействия. Золото находится не только на поверхности Земли. В 5 раз больше его содержится в ядре планеты.

Плутоний

Этот элемент – одна из ступеней радиоактивного преобразования урана. В недрах планеты он тоже есть, но в мизерных количествах. Плотность его составляет 19,7 г/см³. Из-за своей радиоактивности плутоний всегда теплый, при этом плохо проводит ток и тепло.

Нептуний

Это еще одно детище урана, полученное в ходе ядерных реакций. Плотность – 20,25 грамм на кубический сантиметр. Нептуний довольно мягкий и ковкий материал, который медленно вступает в реакцию с воздухом и водой.

Рений

Рений – еще один тугоплавкий, ковкий, стойкий к окислению элемент. Температура плавления – 2000 °C. В общей сложности мировые запасы элемента составляют примерно 17 000 тонн. Плотность рения – 21,03 г/см³. Его используют в медицине, ювелирном деле, вакуумной технике, электронных приборах и металлургии.

Платина

Платина – хоть и не самый тяжелый металл, но довольно близок к этому – 21,45 г/см³. Она используется не только ювелирами, но и хирургами, специалистами в области инвестиций, в химической и стекольной промышленности, автомобильном деле, биомедицине и электронике. Платина исключительно вынослива, а изделия из нее трудно поцарапать. Этот элемент встречается в 30 раз реже золота.

Осмий

Плотность 22,6 г/см³ – самый тяжелый в мире металл, он твердый, но довольно ломкий. Как его ни нагревай, свой блеск и серо-голубоватый оттенок он не потеряет ни при каких условиях. Его трудно обрабатывать, в основном залегает в местах падения метеоритов.

Иридий

Разница между иридием и осмием по плотности – в сотых частях грамма. Иридий тугоплавкий, относится к редким, драгоценным. Не взаимодействует с кислотами, воздухом и водой. Применяется для контроля сварочных швов, а в палеонтологии и геологии используется в качестве индикатора слоя, сформировавшегося после падения метеорита.

По данным портала ЗАЧЕСТНЫЙБИЗНЕСОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ЛОНСДЕЙЛИТ»По данным портала ЗАЧЕСТНЫЙБИЗНЕС7719880396

О компании:
ООО «ЛОНСДЕЙЛИТ» ИНН 7719880396, ОГРН 1147746620427 зарегистрировано 03.06.2014 в регионе Москва по адресу: 105425, г Москва, улица Парковая 3-Я, дом 35, ПОМ./КОМН. II/1. Статус: Действующее. Размер Уставного Капитала 10 000,00 руб.

Руководителем организации является: Генеральный Директор — Пономарев Николай Юрьевич, ИНН . У организации 1 Учредитель. Основным направлением деятельности является «деятельность агентов по оптовой торговле промышленными и техническими химическими веществами, удобрениями и агрохимикатами». На 01.01.2020 в ООО «ЛОНСДЕЙЛИТ» числится 1 сотрудник.

Рейтинг организации: Средний  подробнее
Должная осмотрительность (отчет) ?

Статус: ?
Действующее

Дата регистрации: По данным портала ЗАЧЕСТНЫЙБИЗНЕС

?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

03.06.2014

Среднесписочная численность работников: ?
01.01.2020 – 1 ↓ -4 (5 на 01.01.2019 г.)
Фонд оплаты труда / Средняя заработная плата Доступно в Премиум Доступе ?
Среднемесячная заработная плата в организации выше среднемесячной заработной платы в регионе Москва по данным РОССТАТ. Подробнее…

ОГРН 
?
 
1147746620427   
присвоен: 03.06.2014
ИНН 
?
 
7719880396
КПП 
?
 
771901001
ОКПО 
?
 
11254844
ОКТМО 
?
 
45307000000

Реквизиты для договора 
?
 …Скачать

Проверить блокировку cчетов 
?

Контактная информация 7-90… Посмотреть
?

Отзывы об организации 
?: 0   Написать отзыв

Юридический адрес: ?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
105425, г Москва, улица Парковая 3-Я, дом 35, ПОМ./КОМН. II/1
получен 15.07.2015
зарегистрировано по данному адресу:
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

По данным портала ЗАЧЕСТНЫЙБИЗНЕС
Руководитель Юридического Лица
 ?По данным портала ЗАЧЕСТНЫЙБИЗНЕС
Генеральный Директор
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Пономарев Николай Юрьевич

ИНН ?

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

действует с По данным портала ЗАЧЕСТНЫЙБИЗНЕС
03.06.2014

Учредители ? ()
Уставный капитал: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
10 000,00 руб.

100%

Пономарев Николай Юрьевич
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

10 000,00руб., 03.06.2014 , ИНН

Основной вид деятельности: ?По данным портала ЗАЧЕСТНЫЙБИЗНЕС
46.12.3 деятельность агентов по оптовой торговле промышленными и техническими химическими веществами, удобрениями и агрохимикатами

Дополнительные виды деятельности:

Единый Реестр Проверок (Ген. Прокуратуры РФ) ?

Реестр недобросовестных поставщиков: ?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

не числится.

Данные реестра субъектов МСП: ?

Критерий организации   По данным портала ЗАЧЕСТНЫЙБИЗНЕС
Микропредприятие

Налоговый орган ?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
Инспекция Федеральной Налоговой Службы № 19 По Г.москве
Дата постановки на учет: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
03.06.2014

Регистрация во внебюджетных фондах

Фонд Рег. номер Дата регистрации
ПФР 
?
 
087414005302
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
04.06.2014
ФСС 
?
 
772406368277381
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
05.12.2017

Уплаченные страховые взносы за 2018 год (По данным ФНС):

— на обязательное социальное страхование на случай временной нетрудоспособности и в связи с материнством: 4 847,97 руб. ↓ -0.09 млн. (90 335,91 руб. за 2017 г.)

Коды статистики

ОКАТО 
?
 
45263570000
ОКОГУ 
?
 
4210014
ОКОПФ 
?
 
12300
ОКФС 
?
 
16

Финансовая отчетность ООО «ЛОНСДЕЙЛИТ» (по данным РОССТАТ) ?

 ?

Финансовый анализ отчетности за 2019 год
Коэффициент текущей ликвидности:

0.7

Коэффициент капитализации:

42.3

Рентабельность продаж (ROS):

0.1
Подробный анализ…

Основные показатели отчетности за 2019 год (по данным ФНС):
Сумма доходов: — 27 111 000,00 руб.

↓ -92.86 млн.
(119 975 000,00 руб. за 2018 г.)

Сумма расходов: — 23 959 000,00 руб.

↓ -85.63 млн.
(109 590 000,00 руб. за 2018 г.)

Уплаченные налоги за 2018 г.:По данным портала ЗАЧЕСТНЫЙБИЗНЕС
— неналоговые доходы, администрируемые налоговыми органами: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
0,00 руб.По данным портала ЗАЧЕСТНЫЙБИЗНЕС
— налог на добавленную стоимость: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
5 240 200,00 руб.По данным портала ЗАЧЕСТНЫЙБИЗНЕС
— налог на прибыль: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
3 226 905,00 руб.

В качестве Поставщика:

,

на сумму

В качестве Заказчика:

,

на сумму

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Судебные дела ООО «ЛОНСДЕЙЛИТ» ?

найдено по ИНН: По данным портала ЗАЧЕСТНЫЙБИЗНЕС

найдено по наименованию (возможны совпадения): По данным портала ЗАЧЕСТНЫЙБИЗНЕС

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Исполнительные производства ООО «ЛОНСДЕЙЛИТ»
?

найдено по наименованию и адресу (возможны совпадения): По данным портала ЗАЧЕСТНЫЙБИЗНЕС

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Лента изменений ООО «ЛОНСДЕЙЛИТ»
?

Не является участником проекта ЗАЧЕСТНЫЙБИЗНЕС ?

Мифы о лонсдейлите

Группа китайских учёных (Pan, Zicheng; Sun, Hong; Zhang, Yi; and Chen, Changfeng) в 2009 году (видимо, для привлечения внимания) сделала ложное заявление о том, что согласно проделанным ими теоретическим исследованиям, в случае отсутствия примесей лонсдейлит был бы на 58 процентов твёрже алмаза.

Заявленное не соответствует действительности.

Даже из результатов этой самой теоретической работы вытекает, что лонсдейлит мягче алмаза.

Вообще говоря, согласно современным теоретическим и практическим научным данным, не существует и не может существовать минералов или соединений тверже алмаза. Любые соединения на основе фуллеренов — фуллериты; лонсдейлит; любые соединения бора, в частности: давно активно используемый в промышленности кубический нитрид бора (он же кубонит, боразон, эльбор, кингсонгит, киборит), плотный гексагональный (вюрцитоподобный) нитрид бора, карбид бора, субоксид бора, нитрид углерода-бора; карбин и прочие, в том числе на практике еще не полученные, уступают алмазу по твердости. Однако, многие из материалов повышенной твердости имеют гораздо большую область применения, ввиду того, что, несколько уступая в твердости, превосходят алмаз по термоустойчивости, прочности и устойчивости к окислению. Также, например, важным преимуществом нитридов бора является их высокая химическая стойкость. Они не реагируют с кислотами и щелочами, инертны практически ко всем химическим элементам, входящим в состав сталей и сплавов. Особенно следует отметить инертность нитридов бора к железу, являющемуся основой всех сталей, тогда как алмаз хорошо растворяется в железе, что является причиной интенсивного износа алмазных кругов при шлифовании.

Минералов или соединений тверже алмаза нет, но существуют материалы на основе минерала алмаз, которые, иногда значительно, превосходят по твердости классический кристалл алмаза.

Один из способов улучшения механических характеристик веществ состоит в их наноструктурировании. В частности, повысить твердость, например, алмаза можно, создавая на его основе нанокомпозиты или нанополикристаллы. При этом твердость иногда удается повысить даже вдвое. Японские производители уже сейчас выпускают, сравнительно большие, порядка кубического сантиметра, нанополикристаллы алмаза (самый крупный, из существующих, кристалл лонсдейлита, к примеру, можно разглядеть только в микроскоп). Однако при использовании данного материала возникает ряд проблем, основная из которых состоит в его исключительной твердости, вследствие чего он практически не поддается шлифовке.

Самое магнитное вещество

Если бы индуктор являлся небольшим чёрным куском, то это было бы то самое вещество. Вещество, разработанное в 2010 году из железа и азота, обладает магнитными способностями, которые на 18% больше, чем предыдущий «рекордсмен», и является настолько мощным, что заставил учёных пересмотреть, как работает магнетизм. Человек, который открыл это вещество, дистанцировался со своими изучениями, чтобы никто из других учёных не смог бы воспроизвести его работу, так как сообщалось, что аналогичное соединение разрабатывалось в Японии в прошлом в 1996 г., но другие физики не смогли его вопроизвести, поэтому официально это вещество не приняли. Непонятно, должны ли японские физики пообещать сделать «Сепуку» при этих обстоятельствах. Если это вещество можно будет воспроизвести, это может означать новый век эффективной электроники и магнитных двигателей, возможно, усиленные по мощности на порядок.

Самое горячее вещество

Существует очень мало вещей в мире, известных человеку как нечто более горячее, чем внутренняя поверхность недавно разогретого в микроволновке Hot Pocket, но это вещество, кажется, побьёт и этот рекорд. Созданное столкновением атомов золота при почти световой скорости, вещество называют кварк-глюонным «супом», и оно достигает сумасшедших 4 триллионов градусов Цельсия, что почти в 250 000 раз горячее вещества внутри Солнца. Величина энергии, испускаемой при столкновении, была бы достаточной, чтобы расплавить протоны и нейтроны, что само по себе имеет такие особенности, о которых вы даже и не подозревали. Учёные говорят, что это вещество могло бы нам дать представление о том, на что было похоже рождение нашей Вселенной, поэтому стоит с пониманием отнестись к тому, что крошечные сверхновые не создаются ради забавы. Тем не менее, действительно хорошие новости состоят в том, что «суп» занимал одну триллионную сантиметра и длился в течение триллионной одной триллионной секунды.

Самое радиоактивное вещество

Говоря о радиации, стоит упомянуть о том, что светящиеся зелёные стержни «плутония», показанные в «Симпсонах» — это всего лишь выдумка. Если что-либо является радиоактивным, это вовсе не означает, что оно светится. Стоит об этом упомянуть, так как «полоний-210» настолько радиоактивен, что он светится голубым. Бывшего советского шпиона, Александра Литвиненко ввели в заблуждение, когда ему добавили в еду этого вещества, и вскоре после этого он умер от рака. Это не та вещь, с который вы захотите пошутить, свечение вызывается воздухом вокруг вещества, на который воздействует радиация, и, в самом деле, объекты вокруг могут нагреваться. Когда мы говорим «радиация», мы думаем, например, о ядерном реакторе либо взрыве, где действительно происходит реакция деления. Это только выделение ионизированных частиц, а не вышедшее из-под контроля расщепление атомов.

Углеродные нано-трубки

Фактически это листы углерода толщиной в один атом, свёрнутые в цилиндры — их молекулярная структура напоминает рулон проволочной сетки, и это самый прочный материал, известный науке. В шесть раз легче, но в сотни раз крепче стали, нано-трубки обладают лучшей теплопроводностью, чем алмаз, и проводят электричество эффективнее меди.

Сами трубки не видны невооружённым взглядом, а в необработанном виде вещество напоминает сажу: чтобы проявились его необыкновенные свойства, надо заставить вращаться триллионы этих невидимых нитей, что стало возможным относительно недавно.

Материал может применяться в производстве кабеля для проекта «лифта в космос», достаточно давно разработанного, но до недавнего времени совершенно фантастичного из-за невозможности создать кабель длиной 100 тыс км, не согнувшийся бы под собственным весом.

Углеродные нано-трубки помогают и при лечении рака груди — их можно помещать в каждую клетку тысячами, а наличие фолиевой кислоты позволяет выявлять и «захватывать» раковые образования, затем нано-трубки облучают инфракрасным лазером, и клетки опухоли при этом погибают. Также материал может применяться в производстве лёгких и прочных бронежилетов…

Самое ядовитое вещество

Скажите, что бы вы меньше всего хотели, что могло бы попасть на ваше лицо? Это вполне мог быть самый смертоносный яд, который по праву займёт 3 место среди основных экстремальных веществ. Такой яд, действительно отличается от того, что прожигает бетон, и от самой сильной кислоты в мире (которую скоро изобретут). Хотя и не совсем так, но вы все, без сомнений, слышали от медицинского сообщества о ботоксе, и благодаря ему прославился самый смертоносный яд. Ботокс использует ботулотоксин, порождаемый бактерией «клостридиум ботулинум», и она очень смертоносна, и её количества, равного крупинке соли, достаточно, чтобы убить человека весом в 200 фунтов (90,72 кг; прим. mixednews). На самом деле, учёные рассчитали, что достаточно распылить всего 4 кг этого вещества, чтобы убить всех людей на земле. Наверное, орёл бы поступил гораздо гуманнее с гремучей змеёй, чем этот яд с человеком.

Строение и свойства

Укладка слоёв лонсдейлита

Алмаз и лонсдейлит имеют одинаковые валентные углы, которые равны 109°28’16’’, длины связей у них равны 0,1545 нм, а координационное число — 4. Элементарная ячейка алмаза содержит восемь атомов углерода, а лонсдейлита — четыре. Решётки алмаза и лонсдейлита отличаются способом упаковки. Для лонсдейлита характерна двухслойная упаковка типа (…ABAB…), где каждый последующий тетраэдрический слой повёрнут на 60° по отношению к предыдущему. Для алмаза — трёхслойная типа (…ABCABC…), где все слои построены из одинаковых координационных тетраэдров. Алмаз в этом плане схож с α-графитом, только алмазная плоскость «гофрированная».

Параметры решётки лонсдейлита а=0,251 нм и b=0,417 нм.

Расчётная плотность лонсдейлита 3,51 г/см³, измеренная плотность 3,2 г/см³.

Твёрдость составляет 7-8 единиц по Шкале Мооса.

Лонсдейлит относится к химическому классу металлоидов; он не радиоактивен, химическая формула — С.

Укладка слоёв алмаза

Цвет: коричневато-жёлтый. Блеск: алмазный.

Оптические свойства лонсдейлита: прозрачный, индекс преломления (рефракция) n от 2,40 до 2,41.

Обычные размеры лонсдейлита — это кристаллы, видимые только под микроскопом.

Возможность практического применения гексагонального алмаза вызывает сомнения из-за сложности его получения.

Жидкое стекло

Было время, когда средства для мытья посуды не существовало — люди обходились содой, уксусом, серебряным песком, трением или проволочной щёткой, но новое средство поможет сэкономить немало времени и сил и вообще оставить мытьё посуды в прошлом. «Жидкое стекло» содержит диоксид кремния, образующий при взаимодействии с водой или этанолом материал, который затем высыхает, превращаясь в тонкий (более чем в 500 раз тоньше человеческого волоса) слой эластичного, сверхстойкого, не токсичного и влагоотталкивающего стекла.

С таким материалом отпадает необходимость в чистящих и дезинфицирующих средствах, так как он способен отлично предохранять поверхность от микробов: бактерии на поверхности посуды или раковины просто изолируются. Также изобретение найдёт применение в медицине, ведь стерилизовать инструменты теперь можно с помощью лишь горячей воды, без использования химических дезинфицирующих средств.

Это покрытие может использоваться для борьбы с грибковыми инфекциями на растениях и герметизации бутылок, его свойства действительно уникальны — оно отталкивает влагу, дезинфицирует, при этом оставаясь эластичным, прочным, пропускающим воздух, и совершенно незаметным, а также дешёвым.

Последние изменения

23.06.2020

Юридический адрес изменен с 143345, Московская область, Наро-Фоминский район, рабочий поселок Селятино, здание магазина на 143345, Московская область, Наро-Фоминск город, рабочий поселок Селятино, здание магазина

09.08.2019

Организация исключена из Реестра малого и среднего предпринимательства

10.08.2017

Организация включена в Реестр малого и среднего предпринимательства, категория: микропредприятие

15.06.2017

Статус организации изменен с «в процессе ликвидации» на «действующая».

Добавлены сведения о дополнительном виде деятельности: Деятельность по складированию и хранению (2609)

Добавлены сведения о дополнительном виде деятельности: Деятельность рекламных агентств (24650)

Добавлены сведения о дополнительном виде деятельности: Торговля оптовая лесоматериалами, строительными материалами и санитарно-техническим оборудованием (15230)

Добавлены сведения о дополнительном виде деятельности: Деятельность вспомогательная, связанная с сухопутным транспортом (20759)

Самые твердые материалы на Земле

Самый прочный материал в мире, который тверже алмаза, – полимеризованный фуллерит. Этим материалом можно запросто поцарапать алмаз, с такой легкостью, будто это не драгоценный алмаз, а обычный пластик.

Данный материал представляет собой структурированный кристалл, узлы которого состоят из целых молекул, а не из маленьких атомов.

Лонсдейлит также считается крепким материалом. Это модификация аллотропного углерода, который по твердости близок к алмазу. Данный материал был извлечен из метеоритного кратера. Происхождение материала – графитное.

Третью позицию в рейтинге твердости прочно занимает вюртцитный нитрит бора. Высокую степень прочности данному материалу обеспечивает кристаллическая структура.

Наноструктурированный кубонит, или кингсонгит. Уникальные возможности данного материала обеспечили его частое использование в промышленности.

Нитрит углерода-бора занимает почетную пятую позицию в нашем рейтинге. Главными компонентами данного материала являются атомы бора, а также углерода с азотом.

Промышленное применение титана

Самый твердый металл имеет довольно широкий спектр применения во многих отраслях. Аморфно расположенные атомы обеспечивают титану высочайший уровень прочности на растяжение и кручение, хорошую сопротивляемость ударному воздействию, высокие магнитные качества. Металл используется для изготовления корпусов воздушного транспорта и ракет. Он хорошо справляется с огромными нагрузками, которые испытывают на себе машины, находясь на огромной высоте. Также титан применяется при производстве корпусов для подводных лодок, так как способен выдерживать высокое давление на больших глубинах.

В медицинской отрасли металл используется при изготовлении протезов и зубных имплантатов, а также хирургических инструментов. В качестве легирующей добавки элемент добавляют в некоторые марки стали, что придает им повышенную прочность и стойкость к коррозии. Титан хорошо подходит для литья, так как позволяет получать идеально гладкие поверхности. Из него также изготавливают ювелирные украшения и декоративные изделия. Активно используются и соединения титана. Из диоксида изготавливают краски, белила, добавляют в состав бумаги и пластика.

Сложноорганические соли титана применяют в качестве затвердительного катализатора в лакокрасочном производстве. Из карбида титана изготавливают различные инструменты и насадки для обработки и сверления других металлов. В точном машиностроении из титанового алюминида производят износостойкие элементы, которые обладают высоким запасом прочности.

Самый твердый сплав металла был получен американскими учеными в 2011 году. В его состав вошли палладий, кремний, фосфор, германий и серебро. Новый материал был назван «металлическое стекло». Он соединил в себе твердость стекла и пластичность металла. Последнее не позволяет трещинам распространяться, как это происходит со стандартным стеклом. Естественно, в широкое производство материал запущен не был, так как его компоненты, особенно палладий, относятся к редким металлам и стоят очень дорого.

В данный момент усилия ученых направлены на поиски альтернативных компонентов, которые бы позволили сохранить полученные свойства, но значительно снизили стоимость производства. Тем не менее, отдельные детали для аэрокосмической отрасли уже производятся из полученного сплава. Если альтернативные элементы удастся внедрить в структуру и материал получит широкое распространение, то вполне возможно, что он станет одним из самых востребованных сплавов будущего.

Что такое карбид кремния?

Природный муассанит – очень красивый минерал

Карбид кремния – это неорганическое химическое соединение кремния и углерода. В природе карбид кремния можно найти в чрезвычайно редко встречающемся минерале муассаните. Муассанит в природе можно найти в некоторых типах метеоритов, а также в месторождениях кимберлита и корунда. Материал используется как имитирующий алмазные вставки в ювелирных украшениях, однако чаще всего карбид кремния используют в автомобильной промышленности, электрических и астрономических приборах

Важно понимать, что практически любой карбид кремния, который используется в промышленности, является синтетическим

Природный муассанит впервые был обнаружен в 1893 году Фердинандом Анри Муассаном в виде шестиугольных пластинчатых включений в метеорите Каньон Диабло в Аризоне. Свое название минерал обрел в 1905 году. Несмотря на то, что на Земле карбид кремния невероятно сложно обнаружить, он широко распространен в космосе. Так, муассанит присутствует в газовых облаках вокруг звезд, богатых углеродом, а также в первозданных метеоритах.

7 интересных фактов об алмазах

  • Алмазы образуются в земной мантии на глубинах порядка пары сотен километров. Там огромное давление и там очень жарко. Если алмаз нагреть до такой температуры на поверхности, то он сгорит. Ведь это совершенно такой-же углерод, как и в печке, просто атомы расположены по‑другому. А в земной мантии свободного кислорода нет, вот алмазы и не сгорают.
  • Углерод, из которого состоят алмазы, вроде бы не должен находиться на таких глубинах. Это легкий элемент, он распространен в земной коре, а глубже залегает то, что, за миллиарды лет после формирования планеты, успело «утонуть» в ее недрах. Видимо, дело в субдукции. Океаническая кора, состоящая в основном из базальтов, формируется в середине океанов, в зонах срединно-океанических хребтов.

Оттуда она «раздвигается» в противоположные стороны. Упирающийся в материк край коры подгибается под него и постепенно тонет в мантийном веществе. Вместе с осадочными породами, в которых много углерода. Этот процесс идет со скоростью порядка сантиметров в год, но непрерывно.

  • Ценимые ювелирами и их покупателями голубые алмазы — это почти обычный алмаз, окрашенный небольшой примесью бора. Бор еще легче углерода и его наличие на больших глубинах еще менее вероятно. По всей видимости, он попадает туда так же, но в меньших количествах. Формируются голубые алмазы на рекордной глубине — 600−700 километров. Поэтому на поверхности они очень редки — около 0.02% мировой добычи.
  • При кристаллизации алмаза внутри него иногда оказываются окружавшие его в этот момент вещества. Это беда для ювелира и счастье для геолога. Дело в том, что кристаллическая решетка алмаза из-за своей прочности может удержать захваченные минералы при том же давлении, при котором они находились в момент формирования нашего «камешка».

А это существенно, поскольку многие вещества по мере изменения давления переходят из одного состояния в другое. Скажем, стабильный при шести и более гектопаскалях стишовит при снижении давления превращается в коэсит, а при достижении поверхности — в хорошо знакомый нам кварц. Его химическая формула при этом, конечно, не меняется — это диоксид кремния, SiO2. Кроме того по давлению во включениях можно точно определить глубину формирования алмаза.

  • На поверхность алмазы попадают с кимберлитом — древней магмой, когда-то прорвавшейся на поверхность через кимберлитовую трубку — относительно узкое, слегка расширяющееся к верху жерло. Названием трубка и минерал обязаны южноафриканскому городу Кимберли, возле которого в XIX веке была открыта первая такая трубка. Сейчас по всему миру известно примерно 1500 трубок. Увы, алмазы есть далеко не во всех, а примерно в каждой десятой. Как полагают геологи, на долю кимберлита приходится около 90% мировых запасов алмазов.
  • Оставшиеся 10% приурочены к лампроитам. Это тоже изверженные породы, характеризующиеся высоким содержанием калия и магния.
  • До открытия кимберлитовых трубок алмазы добывались в россыпях, преимущественно речных. Как сейчас ясно, они образовались при эрозии кимберлитовых вулканов, от которых к нашим дням остались только трубки. Россыпей, имеющих промышленное значение, в мире было немного. Бразильские были практически исчерпаны к концу XVIII века, индийские — парой веков раньше. Росcыпи в Южной Африке были найдены в XIX веке и именно их разработка около Кимберли в конечном итоге привела к находке первой трубки.

Производство металлов

Подготовка руды

Основные статьи: Руда, Добыча полезных ископаемых, Обогащение руд, Металлургия и Металловедение

Металлы извлекают из земли в процессе добычи полезных ископаемых. Добытые руды служат относительно богатым источником необходимых элементов. Для выяснения нахождения руд в земной коре используются специальные поисковые методы, включающие разведку и исследование рудных месторождений. Месторождения руд разрабатываются открытым или карьерным способом и подземным или шахтным способом. Иногда применяется комбинированный (открыто-подземный) способ разработки рудных месторождений.

После извлечения руд они, как правило, подвергаются обогащению. При этом из исходного минерального сырья выделяют один или несколько полезных компонентов — рудный концентрат(ы), промпродукты и отвальные хвосты. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости, смачиваемости, электропроводности, крупности, форме зёрен, химических свойствах и др.

Работа с рудой

Из добытой и обогащённой руды металлы извлекаются, как правило, с помощью химического или электролитического восстановления. В пирометаллургии для преобразования руды в металлическое сырьё используются высокие температуры, в гидрометаллургии применяют для тех же целей водную химию. Используемые методы зависят от вида металла и типа загрязнения.

Когда металлическая руда является ионным соединением металла и неметалла, для извлечения чистого металла она обычно подвергается выплавлению — нагреву с восстановителем. Многие распространённые металлы, такие как железо, медь, олово, плавят с использованием углерода в качестве восстановителя. Некоторые металлы, такие как алюминий и натрий, не имеют ни одного экономически оправданного восстановителя и извлекаются с применением электролиза.

Сульфидные руды не улучшаются непосредственно до получения чистого металла, но обжигаются на воздухе, с целью преобразования их в окислы.

Лонсдейлит

Метеориты — главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Паучий шелк – один из самых прочных материалов на Земле

Несмотря на свои удивительные свойства, наткнуться на паутину и особенно в лесу максимально неприятно

На самом деле паучий шелк – один из самых прочных природных материалов на нашей планете. Как вы, вероятно, знаете, пауки используют паутину, чтобы поймать добычу и защитить потомство. Хотя прочность паучьего шелка варьируется от вида к виду, паучий шелк почти так же прочен, как высококачественная сталь. Согласитесь, это довольно серьезно. Вот почему человек паук из небезызвестной вымышленной вселенной способен так лихо и с пользой использует паучий шелк. Возможно, в будущем паучий шелк будут использовать в качестве мышц для роботов. Подробнее об этом удивительном предложении ученых читайте в материале Ильи Хеля.

О металлах в природе

Металлы разделяются на черные и цветные. Классическим представителем первого вида является железо. Цветные образуют более дорогостоящую группу.

Как производят металлы

Металлы в чистом виде в природе не встречаются. Содержатся они в рудах.

Их производство идет по следующим этапам:

  • определение месторождений;
  • добыча руды:
  • извлечение металла.

Самые прочные из металлов

Прочность — это свойство металла противостоять внешним нагрузкам. Сопротивляемость элемента обеспечивается его внутренней структурой, способной создавать внутреннее напряжение, которое противостоит наружному давлению.

К самым прочным металлам относятся:

  • титан;
  • рений;
  • бериллий;
  • хром;
  • тантал;
  • иридий.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector