Hi-end усилитель для наушников для тех, у кого проблемы

Активный регулятор громкости.

Регулятор громкости также реализован по идее Питера Баксандалла, что во-первых позволило получить сверхнизкий уровень шума (особенно на малых громкостях), а во-вторых получить логарифмическую характеристику регулирования при использовании потенциометров с линейной зависимостью сопротивления от угла поворота. Максимальное усиление составляет +16 дБ, при этом точка 0 дБ получается в среднем положении потенциометра.

Четыре соединённых параллельно усилителя, как отмечалось выше, служат для снижения уровня шума на 6 дБ. Уровень собственных шумов такого регулятора составляет -101 дБ при максимальном усилении и -109 дБ при усилении 0 дБ. На практике регулятор громкости обычно устанавливается в положении -20 дБ, тогда уровень шума составит -115 дБ, который существенно ниже порога слышимости.

Чтобы вы могли оценить качество каждого каскада для них были приведены собственные уровни шумов. Результирующий уровень шума данного предусилителя, как нетрудно догадаться, будет несколько варьироваться в зависимости от положения потенциометров.

Симметричный выход реализован за счёт фазоинвертора на ОУ IC9A и имеет двойную амплитуду сигнала по сравнению с несимметричным. Впрочем, это нормально для профессиональной аудиотехники.

Перечень элементов.

Усилитель и блок питания
(Для стерео-вариант все детали надо взять в двойном количестве)

Резисторы
(1% металлоплёночные, мощностью 0,5Вт, если не указано особо)
R1 = 392 kОм
R2,R5,R12,R20,R32 = 1 kОм
R3,R4 = 150 kОм 2W (BC PR02 series)
R6,R15,R19,R45 = 100 Ом
R7 = 22 kОм 3W (BCPR03 series)
R8 = 2,43 kОм
R9 = 274 Ом
R10 = 560 Ом
R11 = 18 kОм
R13,R17 = 392 Ом
R14,R18 = 2,2 Ом
R16 = 20 kОм
R21,R22 = 0,22 Ом 4W (Intertechnik MOX)
R23 = 10 Ом 2W
R24,R26 = 182  Ом
R25 = 1,5 кОм
R27 = 3,3 кОм
R28,R29 = 1 MОм
R30 = 330 kОм
R31 = 10 MОм
R33, R34, R35 = 100 kОм
R36 = подбирается (примерно 0.22 Ом)
R37,R38 = 100 Ом 1W
R39 = 330 Ом
R40 = 82 kОм 3W
R41 = 150 kОм 3W
R42,R43 = 1 kОм 1W
R44 = 4,7 Ом
P1 = 2 kОм, многооборотный
P2,P3 = 5 kОм, многооборотный

Конденсаторы:
C1 = 100nF 400VDC
C2,C3 = 3.3мкФ 400VDC (ClarityCap SA 630V аудиофильского качества)
C4,C6,C8,C10 = 270 мкФ 50V (Panasonic FC)
C5,C9,C12,C14,C22 = 100nF 50V
C7 = 100nF (Vishay MKP-1834)
C11,C16,C17 = 10мкФ 50V
C13 = 47мкФ 50V
C15 = 1мкФ 250V (типа Wima)
C18 = 22мкФ 63V
C19,C20 = 47мкФ 25V
C21 = 220мкФ 50V
C23 = 2n2 (Wima FKP-1/700 VAC)
C29,C30,C31,C35 = 2n2 (Wima FKP-1/700 VAC)
C24 = 150мкФ 450V
C25 = 100n 450 VDC
C26 = 10мкФ 400V
C27,C28 = 22мкФ 400V
C32,C33,C34,C36,C37,C38 = 4700 мкФ63V (BC056, 30×40 mm, Conrad Electronics)
C39 = 10мкФ 25V
Cfb = 56pF (optional)

Активные элементы:
D2,D3 = UF4007 (при отсутствии можно поставить — 1N4007)
D4,D5 = 1N4001
D6,D7,D8 = 1N4148
D9,D10,D11,D12 = BY228
D13 = 1N4007
LED1 = LED, 5mm, красный светодиод
Z1 = стабилитрон 110V 1.3W
Q1 = BD139
Q2 = 2SC2073
Q3 = 2SA940
Q4,Q5 = 2SC5200
Q6,Q7 = BC550B
Q8 = BS170
Q9,Q10 = BC547B
Qbax = 2SC1815BL
U1 = LM337
U2 = LM317
U3 = TL783

Лампы:
V1 = ECC83 (pref. JJ Electronics), 6Н2П
V2 = ECC88 (pref. JJ Electronics), 6Н23П

Разное:
B1 = мостовой выпрямитель 600 V, 1A (DF06M)
B2,B3 = мостовой выпрямитель 400V, 35A
T1 =трансформатор с вторичными напряжениями: 30V + 250V +6.3V (Amplimo type 3N604)
T2 = трансформатор со вторичными напряжениями:  2×28 VAC, 300VA (Amplimo type 78057)
RLY1 = реле 24V (например  Amplimo type LR)
Радиаторы U3 Fischer SK104 25,4 STC-220 14K/W
Радиаторы U1 и U2, FischerFK137 SA 220, 21K/W
Радиаторы для Q4 и Q5, с тепловым сопротивлением 0.7K/W или лучше.
9-контактная панель для ламп — 2шт.

Чертежи печатных плат (оригинал в формате pdf) качаем здесь.(rar-архив, 186 kb)

Последнюю версию чертежей печатных плат в формате Sprint-Layout от наших читателей (редакцией «РадиоГазеты» НЕ ПРОВЕРЯЛИСЬ!) качаем здесь (rar-архив 117 kb).

Статья подготовлена по материалам журнала «Электор».

Вольный перевод — главный редактор «РадиоГазеты».

Удачного творчества!

Идеи и схема

При проектировании данной схемы брались в расчёт следующие моменты:

  • Усилитель должен работать с относительного высокоомным выходом лампового предусилителя или усилителя электрогитары. Другими словами, входное сопротивление должно быть легкоперестраиваимое для источников с разным выходным импедансом.
  • малое количество компонентов. Поэтому были выбраны микросхемы вместо транзисторов.
  • небольшие усиление и мощность. Требуется раскачать чувствительные динамические наушники, а не акустическую систему.
  • усилитель должен справляться с высокоомными наушниками. Автор использует Sennheiser HD 600 (сопротивление 300 Ом).
  • получить максимально низкие шумы и искажения.

Принципиальная схема прецизионного усилителя для наушников представлена на рисунке:

Увеличение по клику

При разработке этой конструкции рассматривались микросхемы таких производителей как National Semiconductor, Texas Instruments и другие. Масса полезной информации была найдена на ресурсах Headwize и форумах DiyAudio.

В результате, выбор пал на прецизионный драйвер для наушников от Texas Instruments TPA6120A2 и операционные усилители AD8610 от Analog Devices  для входного буфера.

Схема получилась относительно простой, с двухполярным питанием. Если вы уверены в отсутствии постоянной составляющей на выходе вашего источника сигнала, то разделительные конденсаторы (С24 и С30) могут быть исключены из тракта с помощью перемычек Н1 и Н2.

Блок питания обеспечивает на выходе напряжения ±12В при нагрузке до 1А. Его схема представлена на рисунке:

Увеличение по клику

Часто в аудиофильских конструкциях стоимость блока питания в несколько раз превышает стоимость самой усилительной части. Здесь получилось немного лучше — стоимость элементов для блока питания составляет примерно 50$ и самые дорогие элементы здесь трансформатор и электролитические конденсаторы. Можно немного сэкономить, если заменить тороидальные трансформатор на обычный Ш-образный, отказаться от светодиодов и предохранителей на выходе блока.

Была опробована версия с отдельными стабилизаторами для каждого канала TPA6120A2 (микросхема имеет отдельные выводы питания для каждого канала). Разницу ни услышать, ни измерить не удалось, что позволило существенно упростить блок питания.

Так как все, используемые в усилителе микросхемы, имеют низкую чувствительность к шумам и помехам по цепям питания, а также высокий уровень подавления синфазных помех, то применение в блоке питания типовых интегральных стабилизаторов оказалось достаточным для получения высоких характеристик.

Настоятельно рекомендуется избегать в этой конструкции применения импульсных блоков питания, которые генерируют высокие уровни шумов и помех в звуковом диапазоне.

Денежный вопрос

Начну с самого, пожалуй, пикантного вопроса — цены. Спора нет, приличный ламповый усилитель менее чем за 20 тысяч рублей — это действительно совсем не дорого. Однако поиском в интернете умеют пользоваться все, и не секрет, что в России продукция компании Schiit стоит существенно дороже, чем у себя на родине в солнечной Калифорнии.

Можно, конечно, тыкать пальцем в дистрибьюторов, кричать, что рвачи, но для начала советую поинтересоваться, насколько дорожают по пути сюда другие виды товаров, мелкосерийно (это важно!) производимые в США и пользующиеся у нас достаточно ограниченным спросом. Я вот, например, настолько хорошо знаю систему продаж пафосных компонентов для горных велосипедов, что желание тыкать пальцем, обвинять продавцов, экономику или политиков давно пропало

Если есть непреодолимое желание покупать по тамошним ценам — welcome, способы и сопутствующие им сложности хорошо известны. В остальных случаях данностью является ценообразование на нашем рынке, и текущие цены на аппаратуру Schiit — далеко не самое ужасное его проявление.

Одноламповое стерео

На лампе построен предварительный каскад усиления напряжения с инвертором токового режима. С него сигнал попадает на выходной каскад, собранный на дискретных биполярных транзисторах, работающих в классе АВ.

Гнездо лампы керамическое, дизайн корпуса прост, но сборка добротная

Поскольку лампа одна, от идентичности характеристик ее секций напрямую зависит баланс стереоканалов. Причем под «балансом» в данном случае я подразумеваю не только уровень, но и в определенной степени характер саунда. На комплектной лампе заявленная разбежка в характеристиках не превышает два процента, и, забегая немного вперед скажу, что на слух несоответствия в их звучании мне уловить не удалось.

У канадского двойного триода 6BZ7 рабочий ресурс примерно 5 тысяч часов. Новый стоит 1 490 рублей

Интересно, что и высоковольтные, и низковольтные цепи автоматически поддерживают параметры питания активных элементов, что дает достаточно большую свободу для экспериментов с разными лампами. Кстати, сама 6BZ7 известна хорошей линейностью при сравнительно небольшом анодном напряжении. В компактных конструкциях это качество особенно актуально, ведь даже заявленные в нашем случае 60 Вольт на самом деле не так уж и много. Впрочем, в описании Vali 2 инженеры Schiit не без основания ехидничают, что в некоторых куда более дорогих и массивных аппаратах конкурентов анодные цепи сидят на куда более голодном пайке.

Регулятор тембра.

Несмотря на то, что выглядит регулятор несколько необычно, тем не менее здесь применена классическая схема регулятора тембра Баксандалла. Как отмечалось выше из-за низких номиналов переменных сопротивлений номиналы конденсаторов получаются существенно больше «типовых» значений.

Конденсатор С7 (1 мкФ) определяет нижнюю частоту регулировки тембра, а конденсаторы C8 и C9 имеют значение 100 нФ и определяют частоту регулировки тембра на ВЧ. При желании глубину регулировки тембра можно увеличить до ± 10 дБ. За счет элементов IC4 исключено взаимное влияние цепей  НЧ и ВЧ при регулировании тембров.

Не смотря на большие габариты и высокую стоимость, для этой части схемы настоятельно рекомендуется применение полипропиленовых конденсаторов.

Уровень шума регулятора тембра составляет всего -113 дБ в среднем положении регуляторов.

Реле RE1 служит для отключения регулятора тембра, если в нём нет необходимости. В этом случае сигнал снимается с выхода IC2A и поступает напрямую на вход  IC9B в обход регулятора тембра. Чтобы избежать щелчков при коммутации служит резистор R18. Для снижения  перекрестных помех коммутация в каждом канале осуществляется отдельным реле. В этом случае контактные группы реле можно запараллелить, что снизит сопротивление контактов и дополнительно повысит надёжность этой части схемы.

Подробнее об элементах схемы.

Резистор R1 является сеточным резистором лампы V1a. Его значение не критично, но наличие обязательно! Резистор R2 совместно с входной ёмкостью лампы образует фильтр низких частот для защиты входа усилителя от помех. Аналогичную роль выполняет резистор R5 для катодного повторителя.

Номиналы резисторов R3 и R4 выбраны для получения на анодах ламп напряжения чуть больше 190В. При этом ток через каждую лампу составляет 0,8мА. Источник тока для диф. каскада построен на транзисторах Q6, Q7 для увеличения его внутреннего сопротивления. Светодиод задаёт опорное напряжение, а триммером Р1 можно удобно и с высокой точностью установить требуемый ток источника. Для питания генератора тока используется стабилизатор на микросхеме LM337.

При желании в схему можно ввести общую отрицательную обратную связь. Её глубина зависит от номиналов резисторов R6 и R8. При указанных на схеме значениях глубина ОООС составляет 6 дБ. Для повышения устойчивости параллельно R8 можно подключить конденсатор небольшой ёмкости (56пкФ). Если Вы не любите эксперименты или ярый противник отрицательной обратной связи, то элементы R6, R8, JP1, Cfb можно не устанавливать. Даже без общей ООС этот усилитель имеет очень низкие искажения.

Ток покоя лампы катодного повторителя выбран около 9 мА. Для снижения искажений и выходного сопротивления каскада этот тот желательно задавать побольше, но это может негативно сказаться на сроке службы лампы. Автор принял компромиссное решение.

Транзистор Q1 задаёт ток покоя транзисторного выходного каскада. Для обеспечения термостабилизации он должен быть закреплён как можно ближе к выходным транзисторам на общем радиаторе. Резистор P2 должен быть многооборотный и с надёжным контактом движка.

Резисторы R11, R16, P3 определяют входное сопротивление транзисторной части усилителя (при указанных номиналах оно составляет порядка 10 кОм). При использовании полевых транзисторов номиналы этих резисторов могут быть существенно увеличены. Триммер P3 служит для настройки «0» на выходе усилителя. Автор намеренно не использовал интегратор для этих целей, так как считает, что он негативно влияет на звучание.

Элементы R12/C4 и R20/C8 являются дополнительными фильтрами питания, и исключать их из схемы крайне не рекомендуется. Ёмкости конденсаторов С4 и С8 могут быть в пределах 220мкФ-330мкФ.

Транзисторы Q2 и Q4 образуют классический составной транзистор Дарлингтона, который даёт необходимое усиление по току. Транзисторы Q3 и Q5 образуют составной транзистор Шиклаи, имитируя комплементарный PNP транзистор. Так как Q4 и Q5 являются однотипными, то по мнению автора и комплементарность здесь достигается более полная. Для снижения искажений каскада Шиклаи обычно в него добавляют диод Баксандалла. Автор заменил его транзистором в диодном включении ( на схеме обозначен Qbax), что позволило ещё больше снизить искажения выходного каскада. Измеренные искажения при 1 Вт выходной мощности с диодом составили 0,22%, а с транзистором  2SC1815, включенным диодом, всего 0,08%. При больших уровнях выходной мощности разница между диодом и транзистором уменьшается. Печатная плата позволяет установить транзисторы типов 2SC1815 или 2SC2073 или просто диод 1N4007.

Благодаря наличию местных отрицательных обратных связей, выходной каскад имеет низкие искажения и хорошую термостабильность. Резисторы R21 и R22 должны быть безындукционные и возможно меньших габаритов.

Элементы R23 и C7 формируют цепь Цобеля для обеспечения стабильности усилителя на частотах выше  100 кГц. Базовые резисторы R13, R17, R14, и R18 также предотвращают возможные возбуждения на высоких частотах. При ёмкостной нагрузке данного усилителя для повышения его устойчивости можно последовательно с выходом подключить индуктивность (как это часто делается). Катушка содержит  16 витков медного провода диаметром 0,75-мм, намотанных на оправке диаметром 6.3-мм или на резисторе 15 Ом мощностью 2 Вт.

Схема устройства защиты и задержки включения акустических систем показана на рисунке:

Увеличение по клику

Она обеспечивает задержку подключения АС через 30 секунд после включения усилителя и отключения их при появлении на выходе опасного постоянного напряжения. Для минимизации влияния на звук реле для этого блока необходимо выбрать с надёжными и качественными контактами.

Трансформаторы

Теперь перейдем к самому главному. К трансформаторам питания. Сложность изготовления трансформаторов для ламповой техники является еще одним препятствием, которое останавливает начинающих (и не только начинающих) радиолюбителей. Для питания радиоламп требуются высокое напряжение (как правило это 200-300вольт) в цепи анода и низкое, но с большими токами, напряжение на накал. В нашем случае лампы имеют напряжение накала 6.3 вольта. Анодное напряжение на них подается 300вольт.

Можно найти специализированный унифицированный трансформатор для питания ламповых схем марки ТАН (трансформатор анодно-накальный). Но они дороги и не всегда их можно найти. Можно воспользоваться трансформатором взятым от старой радиолы или телевизора. Такие трансформаторы подойдут по всем параметрам, кроме одного — размера. Я для своего усилителя трансформаторы сделал сам. Точнее переделал под свои нужды готовые трансформаторы от недорогих китайских БП, которые вставляются непосредственно в розетку.

Рис3. Трансформаторы подготовленные для переделки

Ищем такие БП в ближайшем магазине, торгующем бытовой техникой. Нам потребуются блоки имеющие на выходе 12 вольт, рассчитанные на выходной ток не менее 1А. Таких трансформаторов потребуется 3 шт. Один из них будет питать накалы радиоламп. Нити накала обеих ламп соединены последовательно и подключены к источнику постоянного напряжения 12в (трансформатор Т2 на схеме). Два других трансформатора придется разобрать.

Сердечник трансформатора состоит из отдельных пластинок — пластинки типа «Ш» или «Е» кому как больше нравится, и перемычки типа «I». После сборки, чтобы трансформатор не гудел, его на заводе обычно пропитывают лаком, поэтому разобрать трансформатор иногда бывает не так просто как кажется. Сначала скальпелем или прочным канцелярским ножом отделяем и вытаскиваем «I» пластины.

Рис 4. Разборка трансформатора

Затем плоскогубцами вытаскиваем из каркаса крайнюю «Ш» пластину. Из за того что сердечник был залит лаком, это может оказаться не таким простым делом, придется попотеть. Если же все попытки вытащить пластинку не увенчались успехом, то тогда сердечник надо прогреть до температуры 90-100 С*. Для этого можно воспользоваться электроплиткой или утюгом

Осторожно, не перегрейте, иначе начнет плавиться пластмасса из которой сделан каркас катушек и трансформатор придется выкинуть. Время от времени можно капать на сердечник капельку воды и как только она начнет закипать, нагрев прекращаем

Далее берутся толстые рукавицы, чтобы не обжечься и операция по разборке продолжается. При нагреве лак, которым залиты пластины, размягчиться и разборка не составит большого труда. В конце концов должно получиться примерно так.

Рис5. Разобранный трансформатор

Как видим, обмотки трансформатора намотаны на двух абсолютно одинаковых катушках. На одной, тонким проводом, намотана первичная обмотка. На второй, более толстым — вторичная. Берем две высоковольтных первичных обмотки от двух разобранных трансформаторов, устанавливаем их в каркас и собираем трансформатор снова. Получится трансформатор с коэффициентом передачи 1:1 и напряжением 220в переменного тока на выходе. После выпрямления этого напряжения получится примерно 300 вольт постоянного тока, что нам и требуется. Включаем собранный трансформатор, на выход для проверки подключаем 15 Вт электрическую лампочку. Проверяем гудит или нет собранный трансформатор. При наличии гудения надо попробовать добавить в сердечник еще несколько пластин (запасные от второго разобранного). Если пластины уже не лезут (все забито плотно) то сердечник надо пропитать жидким лаком и хорошенько высушить. Гудение и вибрация пропадут. Вместо пропитки лаком можно гудящий трансформатор сварить в расплавленном парафине. В подходящей по размеру кастрюльке (консервной банке) растапливается парафин. После того как он расплавиться и станет жидким в него погружают трансформатор и выдерживают в расплавленном парафине 10-20 минут, чтобы пропитались все щели. После этого трансформатор вынимаем из расплава, кладем на кусок картона и даем остыть. Обработанные таким образом трансформаторы не шумят.

После того как все детали подобраны и проверены на исправность, можно приступать непосредственно к сборке усилителя.

Выходной каскад.

Выходная ступень усилителя построена на биполярных транзисторах. Конечно, можно было бы использовать и полевые МОП транзисторы типа BUZ900P или 2SK1058, но автор намеренно их отсеял. Выбранные транзисторы довольно часто используются в звуковых усилителях и при очень хороших характеристиках для аудио-применения они имеют весьма скромную цену и высокую надёжность.

Выходной каскад является квази-комплементарным, т.е. построен на транзисторах одинаковой проводимости в обоих плечах. Подобная конфигурация имела широкое распространение в 70-80-х годах из-за отсутствия доступных p-n-p комплементарных транзисторов. И, в общем-то… заслужила плохую репутацию. Но!  Автор считает, что полностью комплементарных транзисторов не бывает в принципе, а потому, используя однотипные транзисторы можно добиться большей реальной симметрии плеч каскада. Известная фирма Naim использует в своих усилителях только такую конфигурацию выходного каскада.

Значение питающего напряжения составляет 38 В, что  является оптимальным для этого выходного каскада и позволяет для 4— ом или 8— ом нагрузки эксплуатировать усилитель без проблем.

Тонкости усиления

Для тестирования я использовал две пары наушников — 300-омные Sennheiser HD 650 и 62-омные AKG К712 Pro. Причем последние сначала использовались не со штатным, а с кастомным кабелем, изготовленным из посеребренного OFC-проводника Pro Grade Classic XKE от Van damme.

От бросков напряжения при включении наушники и линейный выход защищает реле

Основным источником сигнала послужил близкородственный ЦАП Schiit Modi Multibit, подключенный к ноутбуку Mac BookPro проводом QED Reference USB, а к усилителю — посеребренными QED Signature Audio S. Однако цифра цифрой, но у нас ведь речь о лампах, причем в демократической ценовой категории! Так что отдельная часть испытаний проводилась в тандеме с недорогой виниловой вертушкой Music Hall mmf–2.2, несколько облагороженной картриджем Nagaoka MP-200.

Выходное сопротивление Vali 2 предсказуемо зависит от усиления: 1,2 Ом в режиме х1,25 (2 дБ) и 5,8 Ом в режиме х5 (14 дБ). Впрочем, такой импеданс позволяет без риска нарушения равномерности АЧХ подключать на высоком усилении даже 40-50-омные «уши», хотя необходимость такая вряд ли возникнет. Во всяком случае AKG К712 Pro я слушал в режиме х1,25 и ручке громкости, вывернутой примерно на 12 часов, а для HD 650 ее, как ни странно, оказалось достаточно сдвинуть примерно на час вперед.

А кто у нас певец?

Напоследок хочется высказать некоторые субъективные замечания по поводу использования компьютера в качестве источника сигнала. Естественно, что собирать схему №3 или №5 для того, чтобы подключить к выходу звуковой карты типа ESS688 особого смысла не будет — разницу в качестве звука не будет слышно из-за особенностей этой весьма старой «звучалки».

Данные схемы просто напрашиваются на работу с картами типа SB Live! и более поздними моделями. Конечно, если у вас в компьютере стоят девайсы, создающие кучу наводок при обращении к ним – качественную музыку придется слушать только в минуты отдыха.

Другой вопрос –— как слушать музыку в наушниках? Лично я использую набор Winamp+DFX. Может, мне просто не встречалось других проигрывателей, качество которых меня устроило? Наверное…

Но дело вот в чем: включите эквалайзер, визуализацию установите в виде анализатора спектра — «тонкие полоски» с максимальным качеством кадров в секунду, «огненный» стиль (когда на пиках верхушки полосок становятся красными). И что вы увидите? Скорее всего, практически все полоски одновременно будут доставать до максимальной отметки… (Интересно, многие ли считают это нормой?)

А теперь попробуйте левый ползунок («preamp» — «предварительное усиление») немного сдвинуть вниз, так, чтобы до верхней отметки цветные полоски доставали только иногда.

Если у вас хорошая акустика и битрейт записи не ниже 160, разницу почувствуете сразу (громкость звука понизится, но это легко компенсировать регулятором громкости). В случае, когда разницу в изменении качества звучания услышать не удается — вы, вероятно, уже давно пользуетесь наушниками при езде в общественном транспорте (прослушивание музыки сокращает дорогу, но при этом сильно ухудшает слух).

Если вы считаете, что при воспроизведении музыки все частоты должны звучать одновременно и на полную громкость — вынужден вас разочаровать. В этом случае такой сигнал не будет иметь к музыке никакого отношения, и в радиотехнике для него даже есть специальное название — «белый шум». Подобной смесью частот проверяют, сколько времени могут выдержать динамики без необратимых механических (и прочих) повреждений. Расслышать при этом все ньюансы звучания инструментов вряд ли получится… Так что, если для вас самое главное при прослушивании музыки — громкость, даже усилители вышего класса могут не оправдать возлагавшихся на них надежд.

Между прочим, изготовление высококлассных усилителей для личного пользования не менее увлекательное занятие, чем разгон процессоров и видеокарт. По крайней мере, мне так кажется…

Чутких вам ушей!

Сделай сам усилитель за 500 рублей →
← Классы усилителей

Потроха усилителя для наушников

Когда корпус готов остается только собрать все воедино и заставить работать.

Первым делом я провел провода для накала ламп. Я не стал выпрямлять накал, поэтому провода идущие к лампам желательно делать как можно короче. Накальная обмотка моего трансформатора имеет центральный отвод, который я сразу соединил с выводами экранов между обмотками трансформатора и подключил все это дело к земле.

Детали я напаивал непосредственно на выводы панелек ламп, но так же воспользовался столбиками из оргстекла с контактом, выкрученными из какого-то лампового прибора.

Для усилителя я специально заказал хорошие конденсаторы, однако на момент сборки они не успели придти, поэтому не стал заморачиваться с крепежом имеющихся и посадил все на термоклей. Выглядит не самым лучшим образом, зато все прекрасно работает

После сборки усилитель заработал сходу, но на всякий случай еще раз пробежался по схеме и все проверил.

В качестве проверки правильности работы схемы стоит проверить напряжения в указанных на схеме точках. Если схема собранна правильно, но при этом напряжения отличаются от указанных более чем в 10 раз, то это значит лампам пора на мусорку.

DC-DC преобразователь

Уже были рассмотрены две интересных микросхемы dc-dc преобразователей, это MAX660 и TPS16533. Чтобы не мучиться сборкой лишних схем, мы воспользуемся готовым дешевым и очень вкусным модулем DC-DC преобразователя. 

Изначально планировалось использовать этот модуль с очень интересными заявленными характеристиками. Но были некоторые сомнения, с питанием от аккумулятора, да и цена в 9 долларов немного напрягала. На днях был получен другой модуль, который превзошел все ожидания. 

Стоит такое чудо всего 3 доллара. На АлиЭкспресс очень много продавцов торгующих этим модулем. При заказе просто ориентировался на самую низкую сторону. Уже после получения понял, что это был официальный магазин производителей модуля. Поэтому заказывать рекомендую именно в магазине eletechsup Outlet Store.

Модули продаются под готовые напряжения  ±5, ±6, ±9, ±12, ±15 или ±24 вольта.  В случае необходимости оно может быть изменено перепайкой резистора R1.

Параметры зависят от выбранного выходного напряжения.  Для интересующего нас модуля на ±5 вольт входное напряжение должно составлять 3-4.5 В. При этом выходной ток может достигать 1А для положительного напряжения и 200мА для отрицательной полярности. Что для нас в самый раз.

Реальные характеристики и подробное описание возможностей модуля в скором времени будут рассмотрены в отдельной статье. Пока же могу сказать, что этот модуль потянул 6 сдвоенных ОУ, два из которых составляли описываемый в статье усилитель. Фона нет, да и просадка по напряжению минимальна. Так что модуль своих денег точно стоит. 

Следующим шагом станет выбор корпуса.

На данный момент разработка схемы завершена, модуль питания ожидает испытаний, а я нахожусь в ожидании корпуса и других составных частей. 

Следите за новостями проекта в Твиттере Follow @AudioGeek_ru

Катушки индуктивности.

Катушки индуктивности L3 и L4 намотаны на небольших пластиковых каркасах с воздушным сердечником. Для удобства их изготовления рекомендуется сделать небольшое приспособление, как показано на рисунке:

Для намотки используется эмалированный медный провод диаметром 0,8 мм (с изоляцией). Зажав 20 мм провода (это будет начало катушки) мотаем 20,5 витков и фиксируем второй конец катушки (примерно тоже 20 мм.) Надеваем на катушку термоусадочную трубку (для одной катушки понадобится трубка длинной 10мм и диаметром 20 мм). При нагревании термоусадки старайтесь не расплавить каркас самой катушки.

Вторая катушка мотается аналогично. После намотки выводы катушек следует зачистить от лака и облудить. Можно монтировать их на плату.

Принципиальная электрическая схема

К проекту приступил как только дождался нужных радиоламп и трансформатора с Истока — заказывал TorAN-40. 

  • Тороидальный анодно-накальный трансформатор 40W 
  • Габариты, не более: O25/O75,h40. 
  • 220V => (190V x 0.1А) + (35V x 0.1А) + 2х(6.3V x 1А). 

Для его включения в УНЧ соединил последовательно 2 высоковольтные обмотки, сделал электронный дроссель, нагрузил на 60 мА, напряжение на нагрузке вышло 290 вольт, запаралелил 2 вторичные — нагрузил на 1.96 А — напряжение 6.59 вольта переменки звука, если посчитать, то получится примерно 30 Ватт чистой мощности аудио.

Очень интересно было протестировать трансформатор, всё таки загрузка 75 процентов, а греется до 45 градусов — и это не в корпусе. Понятно, что любой трансформатор будет греться — вопрос до какой температуры? При испытаниях поставил на 2 часа — нагрев на воздухе 45 градусов всего!

Также начитавшись разных «паяльников», где утверждают что для малоомных наушников надо токовое питание и лампы по-мощнее, решил промакетировать 3 схемы. Одну эту Lakonik Lab и две других.

Итак, в итоге слушаю схемку усилителя на 2-х 6Н6П. Даже и не ожидал такой разницы в звучании: просто AIMP, формат MP3 — и то сразу разница чувствуется, а потом запустил мелодию в формате FLAC — ещё больше разница!

О шумах. Когда вход пустой, тогда есть небольшой фон в наушниках, а как подключаю к звуковой карте — фона не слышно. Это норма, так как входные цепи и кабель входной очень влияет, можно попробовать уменьшить шунтируюшее сопротивление по входу.

Примечание редакции по схеме УНЧ

  1. Лампа ECC88 в схеме с резистором 820 Ом в катоде и 47 кОм в аноде выходит далеко за пределы рекомендуемой области применения. Такие значения типичны для ECC83, который также дает гораздо более сильный коэффициент усиления — или с применением отрицательной обратной связи — меньший уровень искажений. Между R1 и R2 должен быть конденсатор, например 0,1 мкФ на любое напряжение (но не электролит). 
  2. Резистор 5 Вт для R5 — это много: здесь не более 0,5 Вт. Точно так же на R4 выделяется меньше 0,5 Вт. Выходной сигнал последней ступени неоправданно перемещает полосу АЧХ снизу для наушников 32 Ом, это 10 Гц, за счет огромного конденсатора 470 мкФ / 400 В. 
  3. Фильтр в блоке питания слишком высокое имеет сопротивление. Почти 500 Ом последовательное сопротивление на канал. При потреблении, скажем, 250 мА в канале, теряем здесь 70 Вт. И выходное напряжение падает до слабых значений. Даже если U = I х R, то для 100 мА падение напряжения всё равно составляет 50 В. Это пустая трата энергии.

Схемы усилителей

БЕСПРОВОДНОЙ ТЕРМОМЕТР С РАДИОКАНАЛОМ
УСИЛИТЕЛЬ 500 ВТ / 8 ОМ
СХЕМА ПРОСТОГО ИНДУКТОМЕТРА
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector