Получение водорода

Получение водорода в лаборатории

В лабораториях водород получают уже известным вам способом, действуя кислотами на металлы: железо, цинк и др. Поместим на дно пробирки три гранулы цинка и прильем небольшой объем соляной кислоты. Там, где кислота соприкасается с цинком (на поверхности гранул), появляются пузырьки бесцветного газа, которые быстро поднимаются к поверхности раствора:

Атомы цинка замещают атомы водорода в молекулах кислоты, в результате чего образуется простое вещество водород Н2, пузырьки которого выделяются из раствора. Для получения водорода таким способом можно использовать не только хлороводородную кислоту и цинк, но и некоторые другие кислоты и металлы.

Соберем водород методом вытеснения воздуха, располагая пробирку вверх дном (объясните почему), или методом вытеснения воды и проверим его на чистоту. Пробирку с собранным водородом наклоняем к пламени спиртовки. Глухой хлопок свидетельствует о том, что водород чистый; «лающий» громкий звук взрыва говорит о загрязненности его примесью воздуха.

В химических лабораториях для получения относительно небольших объемов водорода обычно применяют способ разложения воды с помощью электрического тока:

Реакции водорода со сложными веществами

  • при высокой температуре водород восстанавливает многие оксиды металлов:
    ZnO+H2 = Zn+H2O
    
  • метиловый спирт получают в результате реакции водорода с оксидом углерода (II):
    2H2+CO → CH3OH
    
  • в реакциях гидрогенизации водород реагирует с многими органическими веществами.

Более подробно уравнения химических реакций водорода и его соединений рассмотрены на странице «Водород и его соединения — уравнения химических реакций с участием водорода».

Применение водорода

  • в атомной энергетике используются изотопы водорода — дейтерий и тритий;
  • в химической промышленности водород используют для синтеза многих органических веществ, аммиака, хлороводорода;
  • в пищевой промышленности водород применяют в производстве твердых жиров посредство гидрогенизации растительных масел;
  • для сварки и резки металлов используют высокую температуру горения водорода в кислороде (2600°C);
  • при получении некоторых металлов водород используют в качестве восстановителя (см. выше);
  • поскольку водород является легким газом, его используют в воздухоплавании в качестве наполнителя воздушных шаров, аэростатов, дирижаблей;
  • как топливо водород используют в смеси с СО.

В последнее время ученые уделяют достаточно много внимания поиску альтернативных источников возобновляемой энергии. Одним из перспективных направлений является «водородная» энергетика, в которой в качестве топлива используется водород, продуктом сгорания которого является обыкновенная вода.

Способы получения водорода

Промышленные способы получения водорода:

  • конверсией метана (каталитическим восстановлением водяного пара) парами воды при высокой температуре (800°C) на никелевом катализаторе: CH4 + 2H2O = 4H2 + CO2;
  • конверсией оксида углерода с водяным паром (t=500°C) на катализаторе Fe2O3: CO + H2O = CO2 + H2↑;
  • термическим разложением метана: CH4 = C + 2H2↑;
  • газификацией твердых топлив (t=1000°C): C + H2O = CO + H2↑;
  • электролизом воды (очень дорогой способ при котором получается очень чистый водород): 2H2O → 2H2↑ + O2.

Лабораторные способы получения водорода:

  • действием на металлы (чаще цинк) соляной или разбавленной серной кислотой: Zn + 2HCl = ZCl2 + H2; Zn + H2SO4 = ZnSO4 + H2↑;
  • взаимодействием паров воды с раскаленными железными стружками: 4H2O + 3Fe = Fe3O4 + 4H2↑.

Получение водорода — новый шаг водородной энергетики

Ученые SLAC National Accelerator Laboratory Университета Торонто сделали новый весьма значимый шаг для развития водородной энергетики. Они разработали новый тип геля-катализатора, который применяется при получении водорода из воды через электролиз. Эффективность их геля-катализатора в три раза превышает существующие аналоги.

Применение этого геля является экономически целесообразным, поскольку при его производстве используются относительно недорогие доступные для промышленного производства металлы, такие как – железо, кобальт и вольфрам. Так же преимуществом этого геля является то, что, как утверждает один из его создателей Aleksandra Vojvodic, производство геля несложно поставить на промышленные рельсы.

Ученые SLAC National Accelerator Laboratory утверждают, что идеи и решения, благодаря которым был создан этот материал, весь свой потенциал еще не исчерпали – есть куда двигаться дальше. Будем ждать новых изобретений и решений.

Работающие решения

Пример работающей компактной установки, использующей водород, — мобильная электростанция H2One, разработанная компанией Toshiba. Необходимую для электролиза энергию в ней вырабатывают солнечные батареи, причём избыток электричества накапливается в аккумуляторе на случай неблагоприятных погодных условий.

Электростанция H2One

Вырабатываемый водород направляется либо непосредственно на производство энергии, либо на хранение в специальный бак. В результате станция всегда имеет запас как электроэнергии, так и водорода. Общие показатели станции H2One соответствует её относительно небольшим размерам. За час установка производит до 2 куб. м водорода, для чего потребляет 5 куб. м воды. Мощность установки составляет 55 кВт.

Невысокая мощность с лихвой компенсируется автономностью. Например, на основе станций H2One можно построить эффективную и экологически чистую систему энергоснабжения дома или даже небольшого района. В настоящее время она уже применяется на железнодорожной станции японского города Кавасаки, обеспечивая её электричеством и горячей водой.

Если пожертвовать автономностью, то при помощи водородных станций можно решать серьёзные экологические проблемы — например, утилизировать продукт переработки бытовых отходов. Для этого в 2018 году во всё том же городе Кавасаки была создана установка H2Rex, обеспечивающая электроэнергией гостиницу King SkyFront. Водород она получает не посредством электролиза, а по километровому трубопроводу с мусороперерабатывающего завода Showa Denko. Там он вырабатывается из пластиковых отходов, поступающих, в том числе, из самого отеля.

Кислород, необходимый для генерации электроэнергии, станция H2Rex берёт из атмосферного воздуха. Таким образом, коэффициент использования водорода достигает 96 %, а на выходе образуется обычная вода. Мощности такой установки достаточно для обеспечения электричеством около 100 домовладений.

Наконец, весной 2020 года в городе Фукусима была запущена самая крупная в мире экспериментальная электростанция, работающая на водороде. Для питания электролизных установок на ней используются солнечные батареи общей мощностью 20 МВт, занимающие площадь 180 тыс. кв. м. Всего станция вырабатывает 1,2 тыс. куб. м водорода в час.

Получение чистого водорода

Электролиз воды

Водород можно получить различными способами. Вот лишь некоторые из них, являющиеся наиболее доступными и распространёнными:

  • Электролиз воды. Наиболее эффективный способ — высокотемпературный.
  • Химическая реакция воды и аллюминиево-галиевого сплава.
  • Получение водорода при высокотемпературной обработке угля и древесины.
  • Переработка мусора, бытовых отходов.
  • Выделение водорода через переработку биомассы (навоза, сена, водорослей и иных отходов сельского хозяйства).

Большинство способов основаны на применении высоких температур и, к сожалению, в условиях обычного домашнего хозяйства неприменимы. Однако есть несколько путей для получения водорода в домашних условиях.

Электролизный водород

Самый доступный и наиболее широко распространённый способ добычи водорода в домашних условиях — при помощи реакции электролиза воды. Специальное оборудование, называемое электролизером, довольно доступно на рынке. При этом среди производителей встречаются как именитых гиганты (например, Honda), так и мелкие производители из Китая или стран СНГ. И если в случае с первыми в качестве предоставляемой вниманию продукции можно не сомневаться, то вот вторые часто подводят

При этом не стоит особо обращать внимание на их яркую и многообещающую рекламу. Недобросовестному производителю ничего не стоит заявить о том, что его продукт самый качественный, хороший и долговечный на рынке

Однако не всё, что он скажет, окажется правдой. Особенно должна настораживать цена, так как генератор не может быть слишком дешёвым. Дешевизна может указывать на не очень качественные материалы, использованные при работе, или экономию на сборке. Установки дорогие не просто так, а за счёт обеспечения безопасности в том числе. Так как водород является взрывоопасным, его утечка может принести много бед. Некачественные шланги, негерметичный накопительный бак — и всё, взрыв обеспечен. Качество исполнения иногда может «хромать», так что лучше однажды не поскупиться и потратиться на хорошее оборудование.

Хороший электролизер способен похвастаться качеством, компактностью и простотой эксплуатации. Его можно установить в любом уголке помещения и в качестве топлива для получения заветного водорода использовать обычную воду из-под крана. Обычно электролизер состоит из риформера, топливных элементов, очистной системы, компрессора и ёмкости для хранения газа. Электроэнергия поступает из сети питания. Самые современные модели и вовсе оснащены солнечными батареями. Такое оборудование точно быстро окупится за счет минимальных затрат на его использование, даже учитывая не самую маленькую стоимость самого агрегата.

Водород из сельскохозяйственных отходов

Нередко в интернете можно встретить упоминания о биогазовых установках. Смысл их работы сводится к тому, что в генератор загружается навоз, он там перерабатывается и на выходе получается метан. Конечно, может использоваться не только навоз, а любой компостируемый материал. Однако чистый навоз является наиболее продуктивным и доступным. Полученный биогаз затем по трубам поступает на нужды хозяйства и используется как привычный природный газ. Однако у этого способа добычи водорода есть пара минусов:

  • Водород как таковой в данном процессе является лишь побочным продуктом. Для того,чтобы его отделить, требуется дополнительная обработка полученного газа. Как правило, никто этим не занимается и водород благополучно погибает в объятиях пламени вместе с метаном.
  • Необходимо непрерывное поступление сырья. То есть в генератор без остановки должен поступать навоз, и в больших количествах. Очевидно, что обычное частное хозяйство не сможет обеспечить постоянный поток сырья. А покупать его на стороне — не выгодно. Вывод: такой метод получения водорода подходит только относительно крупным хозяйствам, готовым предоставлять такие объёмы. Однако им такая установка выгоды не принесёт, разве что позволит с пользой для хозяйства избавляться от отходов.

Кроме того, на долю водорода на выходе приходится всего лишь 2-12% водорода. То есть основная масса продукта — метан. Чтобы обеспечивать хозяйство именно водородом, потребуется неимоверное количество сырья и огромные производственные мощности. Так что даже крупным хозяйствам невыгодно фокусироваться именно на выделении водорода. Им придётся либо сжигать его вместе с метаном, что и делается на практике, либо пытаться использовать его также в хозяйстве. Однако для выделения и хранения водорода снова потребуется дополнительное оборудование, а значит, дополнительные расходы. Таким образом, биогазовая установка на сегодняшний день является самым невыгодным методом добычи чистого водорода.

Способы получения водорода

Водород – газообразный элемент без цвета и запаха с плотностью 1/14 по отношению к воздуху. В свободном состоянии он встречается редко. Обычно водород соединен с другими химическими элементами: кислородом, углеродом.

Получение водорода для промышленных нужд и энергетики проводится несколькими методами. Самыми популярными считаются:

  • электролиз воды;
  • метод концентрирования;
  • низкотемпературная конденсация;
  • адсорбция.

Выделить водород можно не только из газовых или водных соединений. Добыча водорода производится при воздействии на дерево и уголь высокими температурами, а также при переработке биоотходов.

Атомный водород для энергетики получают, используя методику термической диссоциации молекулярного вещества на проволоке из платины, вольфрама либо палладия. Ее нагревают в водородной среде под давлением менее 1,33 Па. А также для получения водорода используются радиоактивные элементы.

Термическая диссоциация

Электролизный метод

Наиболее простым и популярным методом выделения водорода считается электролиз воды. Он допускает получение практически чистого водорода. Другими преимуществами этого способа считаются:

Принцип действия электролизного генератора водорода

  • доступность сырья;
  • получение элемента под давлением;
  • возможность автоматизации процесса из-за отсутствия движущихся частей.

Процедура расщепления жидкости электролизом обратен горению водорода. Его суть в том, что под воздействием постоянного тока на электродах, опущенных в водный раствор электролита, выделяются кислород и водород.

Дополнительным преимуществом считается получение побочных продуктов, обладающих промышленной ценностью. Так, кислород в большом объеме необходим для катализации технологических процессов в энергетике, очистки почвы и водоемов, утилизации бытовых отходов. Тяжелая вода, получаемая при электролизе, в энергетике используется в атомных реакторах.

Получение водорода концентрированием

Этот способ основан на выделении элемента из содержащих его газовых смесей. Так, наибольшая часть производимого в промышленных объемах вещества, извлекается с помощью паровой конверсии метана. Добытый в этом процессе, водород используют в энергетике, в нефтеочистительной, ракетостроительной индустрии, а также для производства азотных удобрений. Процесс получения H2 осуществляют разными способами:

  • короткоцикловым;
  • криогенным;
  • мембранным.

Последний способ считается наиболее эффективным и менее затратным.

Конденсация под действием низких температур

Эта методика получения H2 заключается в сильном охлаждении газовых соединений под давлением. В результате они трансформируются в двухфазную систему, которая впоследствии разделяется сепаратором на жидкое составляющее и газ. Для охлаждения применяют жидкие среды:

  • воду;
  • сжиженный этан или пропан;
  • жидкий аммиак.

Эта процедура не так проста, как кажется. Чисто разделить углеводородные газы за один раз не получится. Часть компонентов уйдет с газом, забираемым из сепарационного отсека, что не экономично. Решить проблему можно глубоким охлаждением сырья перед сепарацией. Но это требует больших энергозатрат.

В современных системах низкотемпературных конденсаторов дополнительно предусмотрены колонны деметанизации либо деэтанизации. Газовую фазу выводят с последней сепарационной ступени, а жидкость направляется в ректификационную колонну с потоком сырого газа после теплообмена.

Способ адсорбции

Во время адсорбции для выделения водорода используют адсорбенты – твердые вещества, поглощающие необходимые компоненты газовой смеси. В качестве адсорбентов применяют активированный уголь, силикатный гель, цеолиты. Для осуществления этого процесса применяют специальные аппараты – циклические адсорберы или молекулярные сита. При реализации под давлением этот метод позволяет извлекать 85-процентный водород.

Если сравнивать адсорбцию с низкотемпературной конденсацией, можно отметить меньшую материальную и эксплуатационную затратность процесса – в среднем, на 30 процентов. Методом адсорбции производят водород для энергетики и с применением растворителей. Такой способ допускает извлечение 90 процентов H2 из газовой смеси и получение конечного продукта с концентрацией водорода до 99,9%.

Электрохимический метод получения водорода

При наличии дешевой электрической — энергии экономически целесообразно получать водород из воды, разлагая ее электрическим током. Преимуществом этого метода является высокая степень чистоты получаемого водорода, что исключает необходимость в весьма сложных устройствах для его очистки от примесей. Кроме того, с электролизом воды в настоящее время связано и получение тяжелой воды, необходимой для ядерных реакторов.

Электрохимическим методом получают около 18% мировой продукции водорода.

Некоторое количество водорода получается также методом глубокого охлаждения коксового газа. При нагревании каменного угля без доступа воздуха до 900—1200° образуется так называемый коксовый газ — смесь, содержащая около 50—60% водорода; твердый остаток представляет собой кокс. Для выделения водорода из коксового газа последний подвергают глубокому охлаждению. При этом все газы, кроме водорода, переходят в жидкое состояние и таким путем отделяются от водорода.

За последние двадцать лет в качестве источника получения водорода стал широко применяться метан, содержащийся в природных газах и газах переработки нефти. В 1940 году в США из нового вида сырья было получено 5%водорода, идущего на синтез аммиака, в 1945 году — уже 45%, а в 1953 году—-66%.

Получение водорода из метана можно осуществить разными способами:

1)термическим разложением метана:

СН4 = С + 2Н2 + 18 ккал

2)взаимодействием метана с водяным паром:

СН4 + Н2О = СО + 3Н2 — 49 ккал

3)взаимодействием метана с двуокисью углерода или со смесью двуокиси углерода я водяного пара:

 СН4 + СО2 = 2СО + 2Н2 —60,1 ккал

3СН4 + СО2 + 2Н2О = 4СО + 8Н2 — 158,6 ккал

4)неполным окислением метана:

2СН4 + О2 = 2СО + 4Н2 + 16,1 ккал

При всех этих способах, кроме первого, получаются газовые смеси с сравнительно высоким содержанием окиси углерода. Для увеличения выхода водорода эти смеси вместе с водяным паром подвергают конверсии.

Если водород не используют непосредственно на месте получения, то его транспортируют в сжатом состоянии в стальных баллонах, где он находится под большим давлением.

В лабораториях водород обычно получают действием разбавленной серной или соляной кислоты на цинк:

 Zn + H24 = ZnО4 + Н2

Вместо цинка можно взять железо, но в этом случае реакция идет гораздо медленнее.

Водород, получающийся при действии кислот на цинк и другие металлы, всегда содержит пары воды, а также некоторые газообразные примеси. Если нужен сухой водород, то получающийся газ освобождают от водяных паров, пропуская через концентрированную серную кислоту, жадно поглощающую влагу. Для удаления других примесей пользуются растворами различных солей.

Вы читаете, статья на тему Получение водорода

8.3. Геохимия водорода

На Земле содержание водорода понижено по сравнению с Солнцем, планетами-гигантами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована и водород вместе с другими летучими элементами покинул планету во время аккреции или вскоре после неё.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах. В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Чем хорош водород и как его добывать

При окислении водорода, приводящем к выработке электроэнергии, образуется экологически чистая и во всех смыслах безопасная вода. Из неё снова можно добывать водород, и так без конца. К тому же КПД водородных элементов превышает аналогичный показатель всех остальных экологически чистых источников — он достигает 60 %, в то время как у солнечных электростанций едва дотягивает до 20 %, а у ветряных — до 40 %. И это при том, что и те и другие сильно зависят от погодных условий.

Несмотря на все эти достоинства водородная энергетика не торопится спускаться из космоса на землю. Причины этого заключаются, как ни странно, в сложности добычи самого распространённого в мире элемента. Точнее — в энергии, необходимой для выделения водорода из веществ, в которые он входит.

Наиболее эффективный, с точки зрения энергозатрат, способ добычи водорода предполагает использование метана. Если его соединить с водяным паром при высоких давлении и температуре, то образуется газ с содержанием водорода до 75 %. Однако энергоэффективные установки для добычи водорода имеют такие размеры, что применять их можно исключительно на крупных производствах. Да и метан туда нужно каким-то образом доставить.

А вот простейший электролиз воды, знакомый каждому ученику средней школы, требует немало дополнительной энергии. В конечном итоге остаток получается не таким большим, как хотелось бы. Тем не менее, установки полного цикла на основе обычной воды уже существуют и успешно применяются на практике.

Получение водорода в промышленности

В промышленности водород получают главным образом из природных и попутных газов, коксового газа и продуктов газификации топлива (водяного и паровоздушного газов), путем неполного окисления углеводородов.

Основным источником водорода в промышленности является конверсия (от лат. «превращение») углеводородов, главным образом природного газа, парами воды (пароводяная конверсия):

CH4 + H2O → CO + 3H2, 800-900 °C, ΔH298 = 206,2 кДж/моль

С последующим каталитическим взаимодействием оксида углерода (II) с парами воды:

CO + H2O → CO2 + H2, 550-600 °C, ΔH298 = -41,2 кДж/моль

Катализатором этой реакции служит Fe2O3 с активирующими добавками (Cr2O3, Al2O3, K2O и др.).

Эндотермичность процесса конверсии метана можно частично восполнить энергией, выделяющейся при неполном его окислении.

2CH4 + O2 → 2CO + 4H2, ΔH298 = -71 кДж/моль

Этот процесс называется кислородной конверсией метана. Поэтому в промышленности часто комбинируют все эти три процесса в один. Для этого природный газ смешивается с водяным паром и кислородом:

3CH4 + O2 + H2O → 3CO + 7H2, 850-900 °C, Ni

или

2CH4 + O2 + 2H2O → 2CO2 + 6H2, 850-900 °C, Ni

Диоксид углерода удаляют промывкой газовой смеси водой под давлением и окончательно – поглощением растворами щелочей.

Все описанные выше процессы используются как по отдельности, так и в сочетании друг с другом.

Помимо природного газа для получения водорода путем конверсии используют генераторный (CO + N2), водяной (CO + H2) – пароводяная конверсия, попутные газы – пароводяная и (или) кислородная конверсия.

В связи с уменьшением запасов углеводородного сырья большой интерес приобретает метод получения водорода восстановлением водяного пара раскаленным углем:

C + H2O → CO + H2, 1000 °C, ΔH298 = 131 кДж/моль

При этом образуется генераторный газ. Затраты энергии на его получение можно компенсировать за счет реакции неполного окисления угля:

C + 1/2O2 → CO, ΔH298 = -110,5 кДж/моль

При комбинировании этих процессов получается водяной газ, состоящий в основном из смеси водорода и угарного газа:

3C + H2O + O2 → 3CO + H2

Важным следствием является то, что получаемые генераторный и водяной газы можно использовать для дальнейшего получения водорода методом пароводяной конверсии.

Из газовых смесей с большим содержанием водорода (коксовый газ, газы нефтепереработки) его получают путем глубокого охлаждения смеси, при котором практически все газы кроме водорода сжижаются.

Водород высокой чистоты получают электролизом водных растворов щелочей (NaOH или KOH). Раньше для этого использовалась серная кислота. Однако это нерационально из-за быстрого коррозионного разрушения стальной аппаратуры. Хотя образующаяся в процессе электролиза пероксодисерная кислота H2S2O8 может использоваться для получения пергидроля:

2SO42- — 2ê = S2O82-

H2S2O8 + H2O = H2SO5 + H2SO4

H2SO5 + H2O = H2SO4 + H2O2

В случае щелочей концентрация этих растворов выбирается такой, которая отвечает их максимальной электрической проводимости (25% для NaOH и 34% для KOH). Электроды обычно изготавливают из листового никеля. Этот металл не подвергается коррозии в растворах щелочей, даже будучи анодом. В случае надобности получающийся водород очищают от паров воды и следов кислорода. Этим способом целесообразно получать водород в районах с дешевой электроэнергией.

Водород образуется также как побочный продукт в процессе получения хлора и щелочей электролизом водных растворов хлоридов щелочных металлов.

Потенциальные способы получения водорода в промышленности

1. Термолиз воды:

2H2O → 2H2 + O2, 2000 °C, электрическая дуга.

Недостаток – большие расходы энергии.

2. Фотолиз воды:

2H2O → 2H2 + O2, hμ

3. Биохимическое разложение воды под действием бактерий.

4. Химическое разложение воды, восстановление водорода:

H2O + X = H2 + XO

2XO → 2X + O2, t°

Российский след против углеродного

Российский газовый концерн «Газпром» предложил миру свое видение развития производства водорода, который имеет ряд значительных преимуществ. Он основан на применении пиролиза и плазмохимического метода, что позволяет разлагать метан на водород и твердый углерод. Последний является ценным материалом для промышленного и строительного секторов, электротехники и электроники. В отличие от газообразной двуокиси углерода твердый углерод легко хранится, он нетоксичен. Выделение твердого углерода в рамках производства водорода позволит не только снизить вредные выбросы, но и получать дополнительный доход.

Пиролиз метана и плазмохимические методы получения водорода из природного газа не имеют прямых выбросов СО2. Эти методы предполагают использование метана, но с учетом, что углеродный след поставок российского газа минимален, то предложенный способ производства водорода смело можно называть «зеленым». Тем более, что он предполагает более низкие затраты на энергию по сравнению с электролизом воды.

По словам руководителя «Центра водородных энергетических технологий» Литовского энергетического института Дарюса Мильчуса, у производства водорода с помощью пиролиза есть еще одно значимое преимущество — получаемый газ по цене сопоставим с водородом, производимым при паровой конверсии.

Впрочем, отмечают эксперты, как всякий новый метод, технология пиролиза при производстве водорода требует некоторых технических доработок.

По словам Мильчуса, необходимо провести дополнительные исследования по поиску нового высокоэффективного катализатора для одноступенчатых реакций разложения метана.

Бойер отмечает, что данный метод требует оптимизации затрат на энергоресурсы и изучение возможностей по привлечению к его реализации атомных электростанций или возобновляемых источников энергии.

Эти задачи могут быть решены за счет внедрения комплексных водородных проектов, начиная от развитой системы газопроводов и строительства электростанций до расширения применения водорода в мировой экономике.

Как отметил декан инженерного факультета Имперского колледжа Лондона Найджел Брэндон, водородное топливо может сыграть важную роль в переходе к системе с нулевым выбросом углекислого газа наряду с низкоуглеродной электроэнергией, особенно для секторов с высокими выбросами, таких как промышленность, химическая промышленность и транспортные перевозки на больших расстояниях. Так что масштабное внедрение водородных технологий вряд ли заставит себя ждать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector