Список аэс с реакторами рбмк

Что изменили в реакторах РБМК после чернобыльской катастрофы?

Катастрофа в Чернобыле стала настоящим ударом для Советского Союза, говорит Джонатан Куперсмит, историк технологий из Техасского университета A&M, бывший в Москве в 1986 году. О реальном масштабе случившегося из-за медлительности властей и также халатности на местах общество узнало далеко не сразу.

Советские СМИ не сразу сообщили о катастрофе. Первая информация о последствиях взрыва появилась в шведских СМИ после того, как над страной появилось радиоактивное облако. В отсутствии достоверной информации и внятных комментариев со стороны властей зарубежные издания стали распространять непроверенные данные, основанные на слухах. Советские газеты в ответ обвинили «определенные круги» за рубежом в попытках нагнетать обстановку.

Михаил Горбачёв обратился к советским гражданам только 14 мая, спустя почти три недели после катастрофы.

Кроме того, это положило начало новой эре международной кооперации по вопросам ядерной безопасности. В августе 1986 года Международное агентство по атомной энергии провело конференцию в Венне, где советские ученые проявили беспрецедентный для того времени уровень открытости, сообщив подробности инцидента, говорит Де Геер, который также присутствовал на той конференции.

После жуткой аварии в конструкцию работающих РБМК-1000 были внесены изменения: стало использоваться более обогащенное топливо, было увеличено количество управляющих стержней, введены дополнительные ингибиторы для избежания потери контроля над реактором при низких мощностях.

Три оставшихся реактора Чернобыльской АЭС находились в эксплуатации до 2000 года. 15 декабря 2000 года был навсегда остановлен реактор последнего, 3-го энергоблока. В Литве также оставались два РБМК, которые впоследствии были закрыты по требованию после того, как страна стала членом Европейского союза. К настоящему моменту четыре эксплуатирующихся РБМК находится в Курске, три в Смоленске и еще три в Санкт-Петербурге (четвертый был закрыт в декабре 2018 года).

В дополнение к этому Де Геер отмечает, что эти реакторы не предусматривают наличие защитных систем полной локализации, которая имеется у реакторов западного образца. Эти системы представляют собой щиты из свинца и стали и предназначены для удержания радиоактивного газа или пара от выбросов в атмосферу в случае аварии.

Список сокращений, терминология РБМК

  • A3Р — активная зона реактора
  • АЗ — аварийная защита
  • АЗМ — аварийная защита (сигнал) по превышению мощности
  • АЗРТ — аварийная защита реакторной установки по технологическим параметрам (система)
  • АЗС — аварийная защита (сигнал) по скорости нарастания мощности
  • АР — автоматический регулятор
  • АСКРО — автоматизированная система контроля радиационной обстановки
  • АЭС — атомная электростанция
  • БАЗ — быстродействующая аварийная защита
  • ББ — бассейн-барботер
  • БИК — боковая ионизационная камера
  • БОУ — блочная обессоливающая установка
  • БРУ-Д — быстродействующее редукционное устройство со сбросом в деаэратор
  • БРУ-К — быстродействующее редукционное устройство со сбросом в конденсатор турбины
  • БРУ-Б — быстродействующее редукционное устройство со сбросом в барботер
  • БС — барабан-сепаратор
  • БЩУ — блочный щит управления
  • ВИК — высотная ионизационная камера
  • ВИУБ (СИУБ) — ведущий (старший) инженер управления блоком
  • ВИУР (СИУР) — ведущий (старший) инженер управления реактором
  • ВИУТ (СИУТ) — ведущий (старший) инженер управления турбиной
  • ГПК — главный предохранительный клапан
  • ГЦН — главный циркуляционный насос
  • ДКЭ (р), (в) — датчик контроля энерговыделения (радиальный), (высотный)
  • ДП — дополнительный поглотитель
  • ДРЕГ — диагностическая регистрация параметров
  • ЗРК — запорно-регулирующий клапан
  • КГО — контроль герметичности оболочки (твэлов)
  • КД — камера деления
  • КИУМ — коэффициент использования установленной мощности
  • КМПЦ — контур многократной принудительной циркуляции
  • КН — конденсатный насос
  • КНИ — канал нейтронный измерительный
  • КЦТК — контроль целостности технологических каналов (система)
  • ЛАЗ — локальная аварийная защита
  • ЛАР — локальный автоматический регулятор
  • МАГАТЭ — Международное агентство по атомной энергии
  • МПА — максимальная проектная авария
  • НВК — нижние водяные коммуникации
  • НК — напорный коллектор
  • НСБ — начальник смены блока
  • НСС — начальник смены станции
  • ОЗР — оперативный запас реактивности (условных «стержней»)
  • ОК — обратный клапан
  • ОПБ — «Общие положения безопасности»
  • ПБЯ — «Правила ядерной безопасности»
  • ПВК — пароводяные коммуникации
  • ПН — питательный насос
  • ППБ — плотно-прочный бокс
  • ПРИЗМА — программа измерения мощности аппарата
  • ПЭН — питательный электронасос
  • РБМК — реактор большой мощности канальный (кипящий)
  • РГК — раздаточно-групповой коллектор
  • РЗМ — разгрузочно-загрузочная машина
  • РК СУЗ — рабочий канал системы управления и защиты
  • РП — реакторное пространство
  • РР — ручное регулирование
  • РУ — реакторная установка
  • САОР — система аварийного охлаждения реактора
  • СБ — системы безопасности
  • СДИВТ — старший дежурный инженер вычислительной техники
  • СЛА — система локализации аварий
  • СП — стержень-поглотитель
  • СПИР — система продувки и расхолаживания
  • СРК — стопорно-регулирующий клапан
  • СТК — система технологического контроля
  • СУЗ — система управления и защиты
  • СФКРЭ — система физического контроля распределения энерговыделения
  • СЦК «Скала» — система централизованного контроля (СКАЛА — система контроля аппарата Ленинградской АЭС)
  • ТВС — тепловыделяющая сборка
  • ТВЭЛ — тепловыделяющий элемент
  • ТГ — турбогенератор
  • ТК — технологический канал
  • ТН — теплоноситель
  • УСП — укороченный стержень-поглотитель (ручной)
  • ЯТ — ядерное топливо
  • ЯТЦ — ядерный топливный цикл
  • ЯЭУ — ядерная энергетическая установка

Что стало причиной катастрофы на Чернобыльской АЭС?

Когда Чернобыльская АЭС работала в полную силу, это не было большой проблемой, говорит Лайман. При высоких температурах урановое топливо, которое приводит в действие ядерное деление, поглощает больше нейтронов, что делает его менее реактивным. Но при работе на пониженной мощности реакторы типа РБМК-1000 становятся очень нестабильными.

На станции 26 апреля 1986 года шел планово-предупредительный ремонт. И каждый такой ремонт для реактора типа РБМК включал испытания работы различного оборудования, как регламентные, так и нестандартные, проводящиеся по отдельным программам. Данная остановка предполагала проведение испытаний так называемого режима «выбега ротора турбогенератора», предложенного генеральным проектировщиком (институтом Гидропроект) в качестве дополнительной системы аварийного электроснабжения.

До начала плановой остановки реактор работал на 50-процентной мощности в течение 9 часов. К моменту, когда операторы станции получили разрешение на дальнейшее снижение мощности, в реакторе из-за расщепления урана, скопился поглощающий нейтроны ксенон (ксеноновое отравление), поэтому внутри него не мог поддерживаться соответствующий уровень реактивности. При работе активной зоны ректора в полную мощность ксенон сжигается раньше, чем может начать создавать проблемы. Но поскольку ректор работал в течение 9 часов только вполсилы, поэтому ксенон не выгорел. При запланированном постепенном снижении произошел кратковременный провал по мощности практически до нуля. Персонал станции принял решение о восстановлении мощности реактора, путем извлечения поглощающих стержней реактора (состоят из поглощающего нейтроны карбида бора), которые используются для замедления реакции деления. Кроме того, из-за снижения оборотов насосов, подключенных к «выбегающему» генератору, усугубилась проблема положительного парового коэффициента реактивности. За секунды мощность реактора резко возросла, превысив уровень его возможностей в 100 раз.

Поняв опасность ситуации, начальник смены 4-го энергоблока дал команду старшему инженеру управления реактором нажать кнопку аварийного глушения реактора А3-5. По сигналу этой кнопки в активную зону должны были вводиться стержни аварийной защиты. Однако из-за конструктивных недостатков реактора до конца опустить эти стержни не удалось — давление пара в реакторе задержало их на высоте 2-х метров (высота реактора — 7 метров). Тепловая мощность продолжила стремительно расти, начался саморазгон реактора. Произошли два мощных взрыва, в результате которых реактор 4-го энергоблока был полностью разрушен. Также были разрушены стены и перекрытия машинного зала, возникли очаги пожара. Сотрудники начали покидать рабочие места.

Ученые по-прежнему спорят, что могло послужить причиной каждого взрыва. Согласно некоторым мнениям, оба взрыва могли быть паровыми и вызваны резким повышением давления в циркуляционной системе. Согласно другой версии, один взрыв мог быть паровым. А в результате второго взорвался водород, в ходе химических реакций внутри разрушающегося реактора. Однако определение после взрыва изотопов ксенона в Череповце, что в 370 километрах от Москвы, указывает по словам Де Геера на то, что первый взрыв был на самом деле выбросом радиоактивного газа, выстрелившего на несколько километров в атмосферу.

Крупные аварии на энергоблоках с РБМК

Наиболее серьёзные инциденты на АЭС с реакторами РБМК:

  • 1975 — авария с разрывом одного канала на первом блоке ЛАЭС и выбросом радиоактивности;
  • 1982 — разрыв одного канала на первом блоке ЧАЭС;
  • 1986 — тяжёлая авария с массовым разрывом каналов на четвёртом блоке ЧАЭС и разрушением активной зоны, приведшая к радиоактивному заражению большой территории;
  • 1991 — пожар в машинном зале второго блока ЧАЭС (авария связана в первую очередь с нештатной ситуацией на турбогенераторе);
  • 1992 — разрыв одного канала на третьем блоке ЛАЭС.

Авария 1975 на ЛАЭС многими специалистами считается предтечей Чернобыльской аварии 1986 года.

Авария 1982, согласно внутреннему анализу главного проектировщика (НИКИЭТ), была связана с действиями оперативного персонала, грубо нарушившего технологический регламент.

Причины аварии 1986 года были и остаются предметом горячих споров. Различные группы исследователей приходили к различным заключениям о причинах аварии. Официальная правительственная комиссия СССР назвала в качестве главной причины , нарушавшие технологический регламент. Данной точки зрения также придерживается главный проектировщик — НИКИЭТ. Комиссия Госатомнадзора СССР пришла к выводу о том, что главной причиной аварии являлась . С учётом доклада Госатомнадзора СССР свои выводы об аварии скорректировало МАГАТЭ. После аварии 1986 проведена большая научно-техническая работа по модернизации безопасности реактора и его управления.

Авария 1991 года в машинном зале второго блока ЧАЭС была вызвана отказами оборудования, не зависящими от реакторной установки. В процессе аварии вследствие пожара произошло обрушение кровли машинного зала. В результате пожара и обрушения кровли были повреждены трубопроводы подпитки реактора водой, а также заблокирован в открытом положении паросбросный клапан БРУ-Б. Несмотря на многочисленные отказы систем и оборудования, сопровождавшие аварию, реактор проявил хорошие свойства самозащищённости (благодаря своевременным действиям оперативного персонала в части подпитки КМПЦ по нештатной схеме), что предотвратило разогрев и повреждение топлива.

Разрыв одного канала на третьем блоке ЛАЭС в 1992 году был вызван дефектом клапана.

Примечания

  1. Зависит от модификации.
  2. Доллежаль Н. А., Емельянов И. Я. Канальный ядерный энергетический реактор. — М.: Атомиздат, 1980.
  3. Интенсификаторы ТВС РБМК-1500 следует отличать от дистанцирующих решёток, установленных на каждой ТВС в количестве 10 шт., которые также содержат турбулизаторы.
  4. Нигматулин И. Н., Нигматулин Б. И., Ядерные энергетические установки. Учебник для ВУЗов. М.: Энергоатомиздат, 1986.
  5. Атомные электрические станции: Сборник статей. Вып. 8, Энергоатомиздат, 1985.
  6. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ, 2007, № 2. Серия: Термоядерный синтез, с. 10-17.
  7. Сборник тезисов докладов XII международной молодёжной научной конференции «Полярное сияние 2009. Ядерное будущее: технологии, безопасность и экология», Санкт-Петербург, 29 января — 31 января 2009 года, с. 49—52.
  8. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ, 2005, № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (86), с. 179—181.
  9. ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ, 2002, № 6. Серия: Физика радиационных повреждений и радиационное материаловедение (82), с. 19-28.
  10. Известия вузов. Ядерная энергетика, 2007, № 1, с. 23-32.
  11. Абрамов М. А., Авдеев В. И., Адамов Е. О. и др. Под общей редакцией Черкашова Ю. М. Канальный ядерный энергетический реактор РБМК. — М.: ГУП НИКИЭТ, 2006.

Характеристики РБМК

Характеристика РБМК-1000 РБМК-1500 РБМКП-2400(проект) МКЭР-1500(проект)
Тепловая мощность реактора, МВт 3200 4800 5400 4250
Электрическая мощность блока, МВт 1000 1500 2000 1500
КПД блока, % 31,3 31,3 37,0 35,2
Давление пара перед турбиной, атм 65 65 65 65?
Температура пара перед турбиной, °C 280 280 450
Размеры активной зоны, м:
— высота 7 7 7,05 7
— диаметр (ширина×длина) 11,8 11,8 7,05×25,38 14
Загрузка урана, т 192 189 220
Обогащение, % 235U
— испарительный канал 2,6-3,0 2,6-2,8 1,8 2-3,2
— перегревательный канал 2,2
Число каналов:
— испарительных 1693-1661 1661 1920 1824
— перегревательных 960
Среднее выгорание, МВт·сут/кг:
— в испарительном канале 22,5 25,4 20,2 30-45
— в перегревательном канале 18,9
Размеры оболочки твэла (диаметр×толщина), мм:
— испарительный канал 13,5×0,9 13,5×0,9 13,5×0.9
— перегревательный канал 10×0,3
Материал оболочек твэлов:
— испарительный канал Zr + 2,5 % Nb Zr + 2,5 % Nb Zr + 2,5 % Nb
— перегревательный канал Нерж. сталь
Число ТВЭЛов в кассете (ТВС) 18 18
Количество кассет (ТВС) 1693 1661

Состояние на 2015 год

Основная статья: Список АЭС с реакторами РБМК

По состоянию на 2015 год эксплуатируется 11 энергоблоков с РБМК на трёх АЭС: Ленинградской, Курской, Смоленской. По политическим причинам (в соответствии с обязательствами Литвы перед Евросоюзом) остановлено два энергоблока на Игналинской АЭС. Также остановлено три энергоблока (№ 1-3) на Чернобыльской АЭС; ещё один блок (№ 4) ЧАЭС был разрушен в результате аварии 26 апреля 1986 г.

Закладка новых или достройка существующих недостроенных блоков РБМК в России в настоящее время не планируется.
Например, принято решение о строительстве Центральной АЭС с использованием ВВЭР-1200 на месте Костромской АЭС, на которой изначально планировалось установить РБМК.
Также было принято решение не достраивать 5-й энергоблок Курской АЭС, несмотря на то, что он уже имел высокую степень готовности — оборудование реакторного цеха смонтировано на 70 %, основное оборудование реактора РБМК — на 95 %, турбинного цеха — на 90 %.

Энергоблок Тип реактора Состояние Мощность(МВт)
Чернобыль-1 РБМК-1000 остановлен в 1996 году 1000
Чернобыль-2 РБМК-1000 остановлен в 1991 году 1000
Чернобыль-3 РБМК-1000 остановлен в 2000 году 1000
Чернобыль-4 РБМК-1000 разрушен аварией в 1986 году 1000
Чернобыль-5 РБМК-1000 строительство остановлено в 1987 году 1000
Чернобыль-6 РБМК-1000 строительство остановлено в 1987 году 1000
Игналина-1 РБМК-1500 остановлен в 2004 году 1300
Игналина-2 РБМК-1500 остановлен в 2009 году 1300
Игналина-3 РБМК-1500 строительство остановлено в 1988 году 1500
Игналина-4 РБМК-1500 проект отменён в 1988 году 1500
Кострома-1 РБМК-1500 строительство остановлено в 1990 году 1500
Кострома-2 РБМК-1500 строительство остановлено в 1990 году 1500
Курск-1 РБМК-1000 активен 1000
Курск-2 РБМК-1000 активен 1000
Курск-3 РБМК-1000 активен 1000
Курск-4 РБМК-1000 активен 1000
Курск-5 РБМК-1000 строительство остановлено в 2012 году 1000
Курск-6 РБМК-1000 строительство остановлено в 1993 году 1000
Ленинград-1 РБМК-1000 активен 1000
Ленинград-2 РБМК-1000 активен 1000
Ленинград-3 РБМК-1000 активен 1000
Ленинград-4 РБМК-1000 активен 1000
Смоленск-1 РБМК-1000 активен 1000
Смоленск-2 РБМК-1000 активен 1000
Смоленск-3 РБМК-1000 активен 1000
Смоленск-4 РБМК-1000 строительство остановлено в 1993 году 1000
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector