Конспект занятия по биологии на тему «пластический обмен. фотосинтез, хемосинтез.»
Содержание:
Фазы
Фотосинтез у растений происходит в листьях через хлоропласты — полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.
Хлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.
Фотосинтез протекает при участии пигментов, которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент — каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.
Фотосинтез проходит две фазы — световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.
Световая
Первая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.
Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).
Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.
Описание процесса световой фазы:
- При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
- В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
- Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
- Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
- Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой — отрицательный за счет электронов;
- С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
- С освободившимся из воды атомным водородом происходит восстановление НАДФ+ в НАДФ·Н2;
Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.
Темновая
Обязательный компонент для этой стадии — углекислый газ, который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.
Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:
- Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
- Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар — глюкозу. Этот процесс называют циклом Кальвина;
Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.
Фазы фотосинтеза
Фазы фотосинтеза – это деление процесса на фотолиз и восстановительную реакцию. Первый протекает на свету и сводится к выделению водорода. Кислород служит побочным продуктом реакции, однако, тоже нужным растению. Оно использует газ в процессе дыхания.
Световая фаза фотосинтеза возбуждает хлорофилл. От переизбытка энергии, его электрон отрывается и начинает перемещение по цепи органических соединений. В ходе путешествия частица способствует синтезу аденозиндифосфорной кислоты из аденозинтрифосфорной.
На это уходит данная электрону энергия. АДФ нужна для образования растением нуклеотидов. Они входят в нуклеиновые кислоты, без которых не возможен метаболизм представителей флоры.
Растратив энергию, электрон возвращается к молекуле хлорофилла. Эта клетка фотосинтеза вновь захватывает квант света. Уставший от работы электрон подкрепляется ею, опять отправляясь на дело. Такова световая фаза процесса. Однако, он не останавливается и в темноте.
Темновой фотосинтез направлен на захват из внешней среды уже углекислого газа. Вместе с водородом он участвует в образовании 6-углеродного сахара. Это и есть глюкоза. Этот результат фотосинтеза сопровождается, так же, образованием веществ, помогающих захватывать новые порции углекислого газа.
Захватываются они опять же, хлоропластами. Те тратят энергию, накопленную за день. Ресурс идет на связывание углекислого газа с рибулозобисфосфатом. Это 5-углеродный сахар. Реакция дает две молекулы фосфоглицериновой кислоты.
В каждой из них по 3 атома углерода. Это один из этапов цикла Кальвина. Он протекает в строме, то есть подстилке хлоропластов. Состоит цикл из трех реакций. Сначала, углекислый газ присоединяется к рубулозо-1,5-дифосфату.
Для реакции обязательно присутствие рубулозобифосфата-карбоксилазы. Это фермент. В его присутствии рождается гексоза. Из нее и получаются молекулы фосфоглицериновой кислоты.
После получения фосфоглицеринового соединения растение восстанавливает его до глицеральдегида-3-фосфата. Его молекулы идут на два «направления». В первом образуется глюкоза, а во втором рубулозо-1,5-дифосфат. Он, как помним, подхватывает газ углекислый.
Фотосинтез на обеих стадиях протекает в растениях активно, поскольку те приспособились захватывать днем максимальное количество энергии солнца. Вспомним школьные классы. Фотосинтезу посвящены несколько уроков ботаники.
Учителя рассказывают, почему у большинства растений плоские и широкие листья. Так представители флоры увеличивают площадь для улавливания квантов света. Не зря и люди сделали солнечные батареи широкими, но плоскими.
Не только кислород
Интересной особенностью бактериального фотосинтеза считается то, что не всегда в его результате образуется кислород. Мало того, многие фотосинтезирующие бактерии – анаэробы и не могут жить в присутствии кислорода, предпочитая окислять сероводород, тиосульфаты, молекулярный водород, серу, которая дальше может превращаться в сульфаты.
Бактериальный фотосинтез не всегда протекает с потреблением углекислого газа. Вместо него фотосинтезирующие микроорганизмы могут использовать другие вещества – соединения серы, например.
Существуют фотоавтотрофные и фотогетеротрофные бактерии. Первые способны жить без органических веществ, синтезируя для себя все необходимое самостоятельно, вторые – не имеют такой способности и нуждаются в органике для полноценного роста.
К фотосинтезирующим бактериям относят оксигенные и аноксигенные микроорганизмы.
Оксигенные
В результате фотосинтеза выделяют кислород. К их числу относят цианобактерии (в том числе азотфиксирующие), которые содержат в своих клетках хлорофилл А, как и фотосинтезирующие растения. Ассимиляция углекислого газа у фотосинтезирующих цианобактерий, которые также называют синезелеными водорослями, происходит с использованием водорода молекул воды.
Аноксигенные
Эти фотосинтезирующие микроорганизмы проводят фотосинтез, не выделяя при этом кислород. В них содержатся бактериохлорофиллы, отличающиеся от тех, которые используют для фотосинтеза растения. В эту группу входят две разновидности микроорганизмов:
- Пурпурные несерные бактерии, для которых донором водорода выступают органические соединения. Среди них встречаются виды, способные жить на средах, в которых нет органики. Однако основное их число считается облигатными гетеротрофами, то есть нуждаются в органических веществах для своего существования.
- Пурпурные и зеленые серобактерии, использующие в качестве поставщика водорода не воду, а сероводород. Последние образуют цветные слои воды и налеты на камнях пресных и соленых водоемов и накапливают в своих клетках серу.
- Зеленые серобактерии и цианобактерии являются облигатными фототрофами и не могут существовать без света. Пурпурные несерные бактерии относятся к числу факультативных фототрофов и способны длительное время существовать без света или при низкой освещенности. Промежуточное положение занимают пурпурные серные бактерии.
- Недавно были обнаружены нитчатые зеленые несерные бактерии, неспособные откладывать серу внутри клеток. Они представляют собой однородную группу видов, отличающихся способом питания (гетероавтотрофный), и способных жить на органических субстратах, которые содержат сероводород и молекулярный водород. Среди них много грамположительных и грамвариабельных видов, окраска которых зависит от условий их существования.
Фотосинтез и азотфиксация
Азотфиксация – процесс, который смогли освоить только прокариоты, организмы, не имеющие оформленных и окруженных мембраной ядер. Происходит он при помощи специального фермента, названого нитрогеназой. Азотфиксация является разновидностью хемосинтеза. Интересно, что азотфиксирующие хемосинтетические бактерии — облигатные анаэробы, могут одновременно иметь способность к фотосинтезу и наоборот, то есть являются хемо- и фотосинтетиками.
Многие азотфиксирующие бактерии способны к фотосинтезу. В первую очередь это цианобактерии. Строение клеток этих микроорганизмов позволяет им разделять во времени две фазы – днем они фотосинтезируют с образованием кислорода, а ночью занимаются азотфиксацией. Изучение жизненного цикла цианобактерии анабены (анабэны) продемонстрировало и другой механизм, позволяющий совмещать хемо- и фотосинтез в колонии бактерий. При снижении количества углекислого газа в окружающей среде, некоторые клетки прекращают фотосинтез и превращаются в гетероцисты, внутри которых начинается азотфиксация. Интересно, что при этом соседние клетки, имеющие различный метаболизм, способны обмениваться между собой его продуктами, обеспечивая существование всей колонии.
Фотосинтез и его значение. Космическая роль фотосинтеза
Высшие растения, водоросли и некоторые бактерии — автотрофные организмы. Название типа питания в переводе с греческого означает «сам питаюсь». Углерод для создания органического вещества они берут из углекислого газа и бикарбонат-ионов НСО3-.
Фотосинтез — это процесс преобразования энергии света в энергию химического связывания органических соединений при участии хлорофилла.
Фотосинтез происходит в хлоропластах, куда поступает углекислый газ и вода. Зеленый пигмент хлорофилл обеспечивает поглощение энергии света, необходимой для химических превращений. Растения в дальнейшем используют созданные молекулы простого углевода для синтеза крахмала, жиров, и других веществ. Кислород выделяется в окружающую среду. Процессы, происходящие в хлоропластах, показаны
Вследствие фотосинтеза ежегодно образуется около 150 миллиардов тонн органического вещества и около 200 миллиардов тонн кислорода. Этот процесс обеспечивает углеродный цикл в биосфере, предотвращая накопление углекислого газа и, тем самым, предотвращая парниковый эффект и перегрев Земли. Органические вещества, образующиеся в результате фотосинтеза, частично потребляются другими организмами, большая часть которых за миллионы лет образовала залежи полезных ископаемых (уголь и бурый уголь, нефть).
Все чаще, в настоящее время рапсовое масло («биодизельное топливо») и спирт, полученный из растительных остатков, также начали использовать в качестве топлива. Озон образуется из кислорода при воздействии электрических разрядов, что создает озоновый экран, защищающий всю жизнь на Земле от вредного воздействия ультрафиолетовых лучей.
Рис.1. Фотосинтез
Как доказал русский ученый К.А. Тимирязев, фотосинтез невозможен без хлорофилла. Исследователь писал, что именно в зеленых листьях совершается процесс, связывающий жизнь на Земле с Солнцем, позволяющий всем на планете пользоваться общим источником энергии.
Значение фотосинтеза и космическая роль зеленых растений:
- Усвоение энергии света для создания органических соединений.
- Создание органической массы (177 млрд. т ежегодно), необходимой для животных и человека.
- Выделение кислорода в атмосферу Земли (около 450 млн. т в год).
- Поддержание концентрации СО2 в воздухе на уровне 0,02–0,04%.
- Накопление энергии.
- Образование почвы.
Благодаря растениям поддерживается содержание молекул О2 в атмосфере нашей планеты на уровне 21%. Над крупными городами, промышленными центрами, транспортными узлами воздух беднее кислородом, запылен, содержит больше углекислого газа, токсичных веществ.
Суть одного из важнейших процессов на Земле отражает химическое уравнение:
6Н2О + 6СО2 + энергия света → С6Н12О6 + О2
Не только кислород
Интересной особенностью бактериального фотосинтеза считается то, что не всегда в его результате образуется кислород. Мало того, многие фотосинтезирующие бактерии – анаэробы и не могут жить в присутствии кислорода, предпочитая окислять сероводород, тиосульфаты, молекулярный водород, серу, которая дальше может превращаться в сульфаты.
Бактериальный фотосинтез не всегда протекает с потреблением углекислого газа. Вместо него фотосинтезирующие микроорганизмы могут использовать другие вещества – соединения серы, например.
Существуют фотоавтотрофные и фотогетеротрофные бактерии. Первые способны жить без органических веществ, синтезируя для себя все необходимое самостоятельно, вторые – не имеют такой способности и нуждаются в органике для полноценного роста.
К фотосинтезирующим бактериям относят оксигенные и аноксигенные микроорганизмы.
Оксигенные
В результате фотосинтеза выделяют кислород. К их числу относят цианобактерии (в том числе азотфиксирующие), которые содержат в своих клетках хлорофилл А, как и фотосинтезирующие растения. Ассимиляция углекислого газа у фотосинтезирующих цианобактерий, которые также называют синезелеными водорослями, происходит с использованием водорода молекул воды.
Аноксигенные
Эти фотосинтезирующие микроорганизмы проводят фотосинтез, не выделяя при этом кислород. В них содержатся бактериохлорофиллы, отличающиеся от тех, которые используют для фотосинтеза растения. В эту группу входят две разновидности микроорганизмов:
- Пурпурные несерные бактерии, для которых донором водорода выступают органические соединения. Среди них встречаются виды, способные жить на средах, в которых нет органики. Однако основное их число считается облигатными гетеротрофами, то есть нуждаются в органических веществах для своего существования.
- Пурпурные и зеленые серобактерии, использующие в качестве поставщика водорода не воду, а сероводород. Последние образуют цветные слои воды и налеты на камнях пресных и соленых водоемов и накапливают в своих клетках серу.
- Зеленые серобактерии и цианобактерии являются облигатными фототрофами и не могут существовать без света. Пурпурные несерные бактерии относятся к числу факультативных фототрофов и способны длительное время существовать без света или при низкой освещенности. Промежуточное положение занимают пурпурные серные бактерии.
- Недавно были обнаружены нитчатые зеленые несерные бактерии, неспособные откладывать серу внутри клеток. Они представляют собой однородную группу видов, отличающихся способом питания (гетероавтотрофный), и способных жить на органических субстратах, которые содержат сероводород и молекулярный водород. Среди них много грамположительных и грамвариабельных видов, окраска которых зависит от условий их существования.
Где идёт фотосинтез
Фотосинтез проходит только в зелёных частях растений, а точней, в особых органах растительных клеток — хлоропластах.
Рис. 1. Хлоропласты под микроскопом.
Хлоропласты являются разновидностью пластид. Они всегда зелёные, т. к. содержат вещество зелёного цвета — хлорофилл.
Хлоропласт отделён от остального объёма клетки мембраной и имеет вид зёрнышка. Внутреннее пространство хлоропласта называется стромой. В ней и начинаются процессы фотосинтеза.
Рис. 2. Внутреннее строение хлоропласта.
Хлоропласты являются как бы фабрикой, на которую поступает сырьё:
- углекислый газ (формула – СО₂);
- вода (Н₂О).
Вода поступает из корней, а углекислый газ — из атмосферы через особые отверстия в листьях. Свет является энергией для работы фабрики, а полученные органические вещества — продукцией.
Сначала производятся углеводы (глюкоза), но впоследствии из них образуется множество веществ различных запахов и вкусов, которые так любят животные и люди.
Из хлоропластов полученные вещества транспортируются в различные органы растения, где откладываются в запас, либо используются.
Как проходит процесс?
Мы уже знаем в общих чертах, как протекает процесс фотосинтеза и какой фотосинтез бывает, теперь давайте познакомимся с ним глубже.
Начинается все с того, что растение поглощает свет. Ей в этом помогает хлорофилл, который в виде хлоропластов располагается в листьях, стеблях и плодах растения. Основное количество данного вещества сконцентрировано именно в листьях. Все дело в том, что благодаря своей плоской структуре, лист притягивает много света. А чем больше света, тем больше энергии для фотосинтеза. Таким образом, листья в растении выступают своеобразными локаторами, улавливающими свет.
Когда свет поглощен, хлорофилл пребывает в возбужденном состоянии. Он передает энергию другим органам растения, которые участвуют в следующей стадии фотосинтеза. Второй этап процесса протекает без участия света и состоит в химической реакции с участием воды, получаемой из почвы, и углекислого газа, получаемого из воздуха. На этой стадии синтезируются углеводы, которые крайне необходимы для жизни любого организма. В данном случае они не только питают само растение, но и передаются животным, которые его съедают. Люди также получают эти вещества, употребив продукты растительного или животного происхождения.
Световая фаза фотосинтеза
В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.
Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.
Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.
На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.
Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.
Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.
Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.
Примерное суммарное уравнение световой фазы фотосинтеза:
H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ
Циклический транспорт электронов
Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.
Фотофосфорилирование и окислительное фосфорилирование
Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.
Растения распространяются на суше
Цианобактерии и водоросли в ходе фотосинтеза выделяли кислород, который со временем изменил состав атмосферы и сделал возможным выход живых существ на сушу. Важным было также формирование озонового слоя для защиты организмов от чрезмерного ультрафиолетового излучения. В начале палеозойской эры появились первые наземные растения. Это были примитивные споровые – мхи и папоротникообразные. Из них развились другие споровые растения. Обитание растений на суше стало возможным благодаря тому, что у них развились специальные приспособления. У растений появился упругий стебель, поддерживающий их тело, а также плотные покровы, предотвращающие испарение влаги. Зародышевые клетки покрывались плотной защитной оболочкой. В середине палеозоя сушу покрывали густые леса из гигантских хвощей, плаунов и папоротников. Споровые растения господствовали на Земле до конца палеозоя.
Your browser does not support the video tag.
Фотосинтезирующие организмы изменили состав атмосферы Земли и создали условия для появления наземных растений
Your browser does not support the video tag.
В палеозое господствовали на Земле споровые: в середине палеозоя густые леса из папоротников распространились на все материках
Окаменевшие листья папоротника в каменном угле
Каменный уголь сформировался из остатков древних растений. Они накапливались в болотах в течение 50–60 миллионов лет, а затем их покрыли осадочные горные породы. Погребенные под осадками органические остатки под влиянием высокой температуры и давления превратились в плотную массу, известную нам как каменный уголь. Основная масса залежей угля образовалась в карбоне. Углеподобный горючий материал более позднего происхождения называют бурым углем
- Живые существа должны были научиться использовать кислород.
- Живые существа начали использовать углерод.
- Живые существа стали нуждаться в энергии.
- Живые существа стали подвергаться значительно меньшему ультрафиолетовому излучению.
С4-фотосинтез
Проблема фотодыхания преодолевается в растениях C4 с помощью двухэтапной стратегии, которая поддерживает высокий уровень CO2 и низкий уровень O2 в хлоропластах, где работает цикл Кальвина. Эта стратегия служит для предотвращения фотодыхания.
Сахарный тростник является лидером в сфере фотосинтеза в нормальных условиях произрастания и является ярким примером растения, использующего фотосинтез C4.
Растения С4 почти никогда не насыщаются светом, а в жарких и сухих условиях значительно превосходят растения С3 по скорости синтеза органических веществ. Они используют двухстадийный процесс, в котором СО2 фиксируется в тонкостенных клетках мезофилла с образованием 4-углеродного промежуточного соединения, обычно малата (яблочной кислоты). 4-углеродная кислота активно перекачивается через клеточную мембрану в толстостенную оболочку, где она расщепляется на CO2 и 3-углеродное соединение.
Преимущество этого двухстадийного процесса состоит в том, что активная закачка углерода в ячейку оболочки пучка и блокирование кислорода создают окружающую среду с 10-120-кратным количеством СО2, доступным для цикла Кальвина, и рубиско оптимально используется, не переходя на связывание кислорода. Высокая концентрация CO2 и отсутствие кислорода означает, что система никогда не испытывает негативных эффектов фотодыхания.
Недостатком фотосинтеза С4 является расход дополнительной энергии АТФ, которая идет на превращение 4-углеродных кислот в 3-углеродные соединения, и обратно. Эта потеря энергии объясняет, почему растения C3 всегда будут превосходить растения C4 по производительности, если им будет достаточно воды и солнца.
Небольшой процент растений С4 включает в себя многие тропические травы и осоки, а также важные продовольственные культуры:
- Кукурузу
- Сорго
- Сахарный тростник
- Просо
Фотосинтетические пигменты
Фотосинтетические пигменты – это вещества, поглощающие энергию света. Существуют три вида этих пигментов: хлорофиллы, каротиноиды и фикобилины.
Самыми важными для фотосинтеза являются хлорофиллы. Они находятся во всех зеленых частях растений: листьях, стебле. Именно они дают зеленую окраску растениям. Свое название они получили от двух греческих слов: «хлорос» – зеленый, «филлион» – лист.
Все зеленые пигменты хлорофиллы хранятся в специальных контейнерах внутри клетки, которые называются хлоропластами. В каждой клеточке листа содержится 20–50 хлоропластов и все они участвуют в процессе фотосинтеза.
Интересно, что хлоропласты имеются не только у растений. Некоторые бактерии и протисты имеют эти органоиды, что позволяет им также производить кислород.
Каротиноиды имеют оранжевую, красную, желтую окраску. Они дают красивый цвет листьям осенью. Яркие цвета моркови, лимона, яблок, арбуза не обходятся без каротиноидов.
Красные водоросли содержат фикобилины красного или синего цвета, которые помогают им поглощать солнечный свет, находясь глубоко на морском дне.