Ученые сделавшие открытия в области электричества

Содержание:

Введение

Нам студентам предстоит решать проблемы ХХIвека. Поэтому, если считать основной целью любого учебного заведения — создание условий для реализации способностей жить в окружающем мире и полноценно себя в нем реализовать, то необходимо задуматься над тем, какие основные проблемы будут решаться людьми через 10-20 лет.

Использование новых информационных технологий в учебном процессе стало не только возможным, но и необходимым условием для полноценного получения знаний. Современные средства новых информационных технологий позволяют провести исследования физических процессов в виртуальном режиме, строить графики, проводить сравнение, анализировать полученные данные. Компьютер со специальной программой помогает студенту провести опыты в виртуальном режиме, обработать результаты, реально увидеть происходящие физические процессы с их графическим отображением в тех опытах, когда невозможно увидеть при реальной монтажной схеме во время проведения эксперимента.

Этот метод обладает следующими преимуществами перед обычными измерительными методами:

Возможность мгновенной регистрации происходящих явлений;

Наличие компьютерной программы, обрабатывающей результаты опыта, избавляет студентов от рутинных математических операций и представляет результаты эксперимента в удобном виде;

Наблюдая, за экспериментами в виртуальном режиме студент видит, как протекают физические явления в отдельных участках цепи;

Доступность многократного повторения эксперимента с минимальными затратами времени на рутинные операции по его проведению.

Выполнение лабораторных работ, решение экспериментальных задач, наблюдение за физическими явлениями вне лаборатории — все эти модели исследовательской поисковой деятельности будут актуальными в дальнейшей жизни студента вне зависимости от выбранной профессии.

Исследование опытов Фарадея в виртуальном режиме при отсутствии соответствующего оборудования помогают студентам увидеть:

физические процессы, возникающие в катушке при движении постоянного магнита;

определить зависимость ЭДС от параметров катушки, скорости движения постоянного магнита;

причины возникновения ЭДС;

изменение направление ЭДС при движении постоянного магнита;

возникновение ЭДС при включении рубильника.

Все эти опыты помогают студенту понять физическую сущность явления электромагнитной индукции и увидеть на производстве и в быту применение этого явления.

Открытие электромагнитной индукции

Практически сразу с момента открытия электрического тока было выявлено, что ток, проходящий по проводнику, создает магнитное поле.

Логично было предположить, что магнитное поле тоже может создать движение электрических зарядов в проводнике. Многие ученые безуспешно бились над этой задачей. Однако, электрические заряды, помещенные в постоянное магнитное поле, никак на него не реагировали.

Открытие было сделано М. Фарадеем 29 августа 1831 года (редкий случай, когда точно известна дата открытия).

Рис. 1. М. Фарадей.

В опыте использовались две катушки – одна создавала магнитное поле, вторая была расположена рядом, так, чтобы сквозь нее проходили магнитные линии первой катушки. Вторая катушка была подключена к гальванометру, который был предназначен для определения возникающего в ней электрического тока.

Рис. 2. Опыт Фарадея с двумя катушками.

Опыт давал отрицательный результат, постоянное поле, пронизывающее вторую катушку, не создавало в ней электрического тока, сколько бы времени не прошло. Но, Фарадей заметил, что перед самым опытом, в момент пуска электрического тока через первую катушку, стрелка гальванометра давала слабое колебание

Порядок опыта был перестроен – теперь главное внимание было уделено моменту включения. И выяснилось, что включение и выключение тока через первую катушку вызывает возникновение импульса тока во второй катушке

В дальнейшем было определено, что для появления импульса можно не только включать и выключать магнитное поле другой катушкой, а, к примеру, приближать и удалять обычный постоянный магнит.

Причем, возникающий ток (как и любой ток в проводнике) создает свое магнитное поле, а направлен он так, чтобы возникающее магнитное поле препятствовало причине, создавшей ток в контуре. Данное правило было позже открыто русским физиком Э.Ленцем.

Многие исследователи, разрабатывавшие теорию электричества, такие, как Х.Эрстед, Ж.Колладон, Дж.Генри, были близки к открытию. Но колебание стрелки в момент запуска или выключения установки они либо вообще не замечали, либо расценивали, как результат случайных внешних сотрясений и не придавали ему значения.

1.1 История открытия явления электромагнитной индукции

Высказывания синьоров Нобили и Антинори из журнала «Antologia».

Господин Фарадей недавно открыл новый класс электродинамических явлений. Он представил об этом мемуар Лондонскому королевскому Обществу, но этот мемуар до сих пор еще не опубликован. Мы знаем о нем только заметку, сообщенную г. Гашеттом Академии наук в Париже 26 декабря, на основании письма, которое он получил от самого г. Фарадея.

Это сообщение побудило кавалера Антинори и меня самого тотчас же повторить основной опыт и изучить его с разнообразных точек зрения. Мы льстим себя надеждой, что результаты, к которым мы пришли, имеют известное значение, а потому мы спешим опубликовать их, не имея никаких предшествоваших материалов, кроме той заметки, которая послужила исходной точкой в наших исследованиях.

«Мемуар г. Фарадея, — как говорит заметка, — делится на четыре части.

В первой, озаглавленной «Возбуждение гальванического электричества», мы находим следующий главный факт: гальванический ток, проходящий через металлический провод, производит другой ток в приближаемом проводе; второй ток по направлению противоположен первому и продолжается только одно мгновение. Если возбуждающий ток удалить, в проводе, находящемся под его влиянием, возникает ток, противоположный тому, который возникал в нем в первом случае, т.е. в том же направлении, как возбуждающий ток.

Вторая часть мемуара повествует об электрических токах, вызываемых магнитом. Приближая к магнитам катушки, г. Фарадей производил электрические токи; при удалении катушек возникали токи противоположного направления. Эти токи сильно действуют на гальванометр, проходят, хотя и слабо, через рассол и другие растворы. Отсюда следует, что этот ученый, пользуясь магнитом, возбуждал электрические токи, открытые г. Ампером.

Третья часть мемуара относится к основному электрическому состоянию, которое г. Фарадей называет электромоническое состояние.

В четвертой части говорится о столь же любопытном, как и необычном опыте, принадлежащим г. Араго; как известно, этот опыт состоит в том, что магнитная стрелка вращается под влиянием вращающегося металлического диска. Он установил, что при вращении металлического диска под влиянием магнита могут появляться электрические токи в количестве, достаточном для того, чтобы сделать из диска новую электрическую машину.

Нам не пришлось делать предварительных опытов, чтобы добиться удачи с опытом г. Фарадея. Первые же катушки, которые мы приблизили к полюсу магнита, сразу оказали свое влияние на гальванометр.

Произведя опыты с кольцеобразной катушкой между полюсами подковообразного магнита, мы заметили, что действие было гораздо слабее, чем то, которое производилось с той же катушкой, когда к магниту прикладывался его якорь. Этот факт наводит на мысль о том, что можно,

Намотав на такой магнит медную проволоку, покрытую шелком, иметь прибор, всегда готовый для таких опытов.

Джеймс Клерк Максвелл математически описал основные законы электричества и магнетизма

Джеймс Клерк Максвелл

Математическая формулировка электромагнитной индукции была разработана немецким физиком и математиком Францем Эрнстом Нейманом (1798-1895) в 1945 году. Эти открытия проложили путь к фундаментальной теоретической композиции, выполненной Джеймсом Клерком Максвеллом (1831-1879), начиная с “силовых линий Фарадея”. Однако работа Максвелла изначально вызывала недоверие у большинства физиков и игнорировалась инженерами.

Только к концу XIX века, после памятного эксперимента с электромагнитными волнами, проведенного Генрихом Герцем в 1887 году, теория Максвелла стала общепринятой и позволила обратиться как к физике, так и к технике.

Сферы применения эффекта КФ

Открытый Фарадеем эффект имеет не только научный смысл, но и достаточно широкое практическое применение. Самый простой пример клетки Фарадея можно встретить в быту, он присутствует почти на любой кухне — это микроволновая печь. Пять стенок её корпуса выполнены из достаточно толстых стальных пластин, а между двумя слоями стекла дверцы заключен металлический слой с перфорационными отверстиями для лучшего обзора.

РЧ-кабина

Радиочастотной кабиной называют изолированное от воздействия электрического, магнитного и радиоизлучения помещение, обычно небольшой площади. В его стены, пол и потолок вмонтированы решётки с высокой электропроводностью, образующие замкнутую, но внешне не видимую клетку.

МРТ-помещения

Такое высокоточное оборудование, как медицинский томограф для магнитно-резонансной диагностики, требует тщательной защиты от внешних электромагнитных волн. Малейшее стороннее воздействие может повлиять на результат исследования, поэтому помещение, в котором находится установка МРТ, экранируется полностью.

Лаборатории

В лабораторных исследованиях для получения точных результатов важно не только использовать передовое оборудование, но и надёжно оградить его от воздействия внешних факторов, таких как магнитные и электрические поля. Следует понимать, что имеется в виду не только направленное излучение от конкретных источников, но и электромагнитные шумы, которые постоянно присутствуют в атмосфере, особенно в населённых пунктах и поблизости от них

Следует понимать, что имеется в виду не только направленное излучение от конкретных источников, но и электромагнитные шумы, которые постоянно присутствуют в атмосфере, особенно в населённых пунктах и поблизости от них.

Для качественного экранирования аппаратуры с эффектом КФ требуются специализированные расчёты конструкции и профессиональная установка.

Защитные костюмы

Для людей, работающих в сферах с высокой вероятностью поражения электрическим током, разработаны специальные костюмы. Их верхний слой выполнен из металлсодержащей ткани и отделён от тела изолирующим материалом. В случае воздействия остаточной статики или электротока заряд стекает по внешней оболочке комплекта.

Защитное облачение незаменимо при работе с высоковольтными линиями. Даже обесточенные, они сохраняют опасный уровень статического заряда за счёт многокилометровой протяжённости электропроводов.

Watch this video on YouTube

В мире развлечений

Эффект КФ, красочно оформленный на сцене, очень зрелищен. В этом случае часто используется не простая клетка, а кажущаяся невесомой оболочка из крупноячеистой сетки или даже специально сконструированный костюм, напоминающий обычную одежду. Ток при этом подводится максимально эффектно, например, при помощи катушек Тесла или подобных им устройств, создающих заряд от электростатического генератора.

Начало

Майкл Фарадей был сыном кузнеца. Элементарные знания он получил в школе для бедных, где научился читать, писать и считать. В девятилетнем возрасте Фарадей разносит газеты, а позже отец определяет его в ученики переплетчика. Любознательный мальчик читал все книги, которые ему отдавали на переплетение. Но больше всего ему нравились научные трактаты. Так будущий ученый расширял свой кругозор и знакомился с последними достижениями современной науки. Чудесный случай свел его с сэром Дэви, который взял его в секретари.

Новая профессия дала ему возможность путешествовать по свету и поддерживать знакомство с великими учеными того времени – Вольта, Гей-Люссаком, Ампером. Именно под влиянием великих людей Фарадей начинал свою научную деятельность.

Что такое клетка Фарадея и как она работает

Итак, данное устройство представляет собой клетку, которая выполнена из металла с высокой электропроводностью и в большинстве случаев имеющее заземление. А принцип действия данного устройства предельно прост:

Принцип работы клетки Фарадея

Под воздействием внешнего электромагнитного поля внутри металла клетки свободные электроны начинают движение. В результате этого противоположные стороны клетки конструкции приобретают такой заряд, что образованное им поле стремится компенсировать воздействие внешнего электромагнитного поля.

Но клетка Фарадея не способна защитить от постоянного или же медленно изменяющегося магнитного поля. Например, в такой клетке компас все так же верно указывает на север, что говорит нам о том, что магнитные линии Земли беспрепятственно проникают во внутренний объем клетки.

Для того, чтобы экранировать высокочастотные излучения, размер ячейки должен быть меньше длины волны излучения.

Причем эффективность экранирования напрямую зависит от формы токопроводящего материала.

При этом прослеживается следующая зависимость: чем быстрее изменяется электромагнитное поле, тем сильнее сопротивляется материал к проникновению поля вовнутрь клетки.

Но при этом так же верно следующее: чем больше частота поля, тем лучше оно проникает через сетку с фиксированным размером ячейки.

Если же источник переменного электромагнитного поля поместить внутрь незаземленной клетки Фарадея, то можно заметить, что электромагнитные волны гасятся в меньшей степени, чем входящие.

Клетка Фарадея в действии

1. Размер ячейки и электропроводность металла клетки.

2. Частота и форма электромагнитной волны.

3. Расстояние от источника излучения.

4. Мощность источника изучения.

И получается, что клетка из сплошных листов стали гораздо эффективней подавляет излучение, чем любая сетка.

Примечания

  1. , с. 208.
  2. Michael Faraday, by L. Pearce Williams, p. 182-3
  3. Michael Faraday, by L. Pearce Williams, p. 191-5
  4. Michael Faraday, by L. Pearce Williams, p. 510
  5. Maxwell, James Clerk (1904), A Treatise on Electricity and Magnetism, Vol. II, Third Edition. Oxford University Press, pp. 178-9 and 189.
  6. В-поле наведенного тока ведет к снижению магнитного потока, в то время как движение цикла имеет тенденцию к увеличению (так как В (х) возрастает по мере цикла движений). Эти противоположные действия — пример принципа Ле Шателье в форме закона Ленца.
  7. K. Simonyi, Theoretische Elektrotechnik, 5th edition, VEB Deutscher Verlag der Wissenschaften, Berlin 1973, equation 20, page 47
  8. В этом примере предполагается, что скорости движения намного меньше скорости света, поэтому корректировкой поля, связанной с преобразованиями Лоренца, можно пренебречь.
  9. Единственным способом определения этого является измерение x от xC в движущемся контуре, скажем ξ = x — xC (t). Тогда за время t движущийся наблюдатель увидит поле B (ξ, t), тогда как неподвижный наблюдатель увидит в той же точке поле B [ ξ + xC (t) ] = B (ξ + xC0 + v t) при xC0 = xC (t = 0).
  10. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 272—273, Copyright 1917 by Theo. Audel & Co., Printed in the United States
  11. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 270—271, Copyright 1917 by Theo. Audel & Co., Printed in the United States

Паразитная индукция и тепловые потери

В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки в сердечниках трансформаторов нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противится причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Есть ряд методов, используемых для борьбы с этими нежелательными индуктивными эффектами.

  • Электромагниты в электрических двигателях, генераторах и трансформаторах не делают из сплошного металла, а используют тонкие листы жести, называемые «ламинатами». Эти тонкие пластины уменьшают паразитные вихревые токи, как будет описано ниже.
  • Катушки индуктивности в электронике обычно используют магнитные сердечники, чтобы минимизировать паразитный ток. Их делают из смеси металлического порошка со связующим наполнителем, и они имеют различную форму. Связующий материал предотвращает прохождение паразитных токов через порошковый металл.

Расслоение электромагнита

Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышению температуры.

На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

Это ротор от двигателя постоянного тока диаметром примерно 20 мм, используемого в проигрывателях компакт-дисков

Обратите внимание, для снижения паразитных индуктивных потерь сделано расслоение полюса электромагнита на части.

Паразитные потери в катушках индуктивности

На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита

Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a, b), тогда как слабее по правому краю (c, d)

Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

Это одна из причин, по которой устройства с высоким напряжением, как правило, более эффективны, чем низковольтные устройства. Высоковольтные устройства имеют множество небольших витков провода в двигателях, генераторах и трансформаторах. Эти многочисленные небольшие витки провода в электромагните разбивают вихревые потоки, а в пределах больших, толстых катушек индуктивности низкого напряжения образуется вихревые токи большей величины.

Закон Фарадея как два различных явления

Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС, генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС, генерируемую действием электрической силы вследствие изменения магнитного поля

Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений

Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности:

Пример 2: проводник, движущийся в постоянном магнитном поле


Рис. 4. Два проводника замкнутые на проводящие обода образуют «рамку» вращающуюся с угловой скоростью ω в радиальном, направленном наружу магнитном поле B фиксированной величины. Ток подается щётками, касающимися верхнего и нижнего дисков с проводящими ободами.

На рис. 4 показан шпиндель, образованный двумя дисками с проводящими ободами, и проводники, расположенные вертикально между этими ободами. ток скользящими контактами подается на проводящие обода. Эта конструкция вращается в магнитном поле, которое направлено радиально наружу и имеет одно и то же значение в любом направлении. то есть мгновенная скорость проводников, ток в них и магнитная индукция, образуют правую тройку, что заставляет проводники вращаться.

Сила Лоренца

В этом случае на проводники действует Сила Ампера, а на единичный заряд в проводнике Сила Лоренца — поток вектора магнитной индукции B , ток в проводниках, соединяющих проводящие обода, направлен нормально к вектору магнитной индукции, тогда сила, действующая на заряд в проводнике, будет равна

F=qBv,{\displaystyle F=qBv\,,}

где v = скорости движущегося заряда

Следовательно, сила действующая на проводники

F=IBℓ,{\displaystyle {\mathcal {F}}=IB\ell ,}

где l — длина проводников

Здесь мы использовали B как некую данность, на самом деле она зависит от геометрических размеров ободов конструкции, и это значение можно вычислить, используя Закон Био — Савара — Лапласа . Данный эффект используется и в другом устройстве, называемом Рельсотрон

Закон Фарадея

Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле ΦB = B w ℓ, где w — ширина движущейся петли.

Ошибочность такого подхода в том, что это не рамка в обычном понимании этого слова. Прямоугольник на рисунке образован отдельными проводниками, замкнутыми на обод. Как видно на рисунке, ток по обоим проводникам течет в одном направлении, то есть здесь отсутствует понятие «замкнутый контур»

Наиболее простое и понятное объяснение этому эффекту дает понятие сила Ампера. То есть вертикальный проводник может быть вообще один, чтобы не вводить в заблуждение. Или же проводник конечной толщины может быть расположен на оси, соединяющей обода. Диаметр проводника должен быть конечным и отличаться от нуля, чтобы момент силы Ампера был ненулевой.

Пример 1: пространственно меняющееся магнитное поле

Рис. 3. Замкнутый прямоугольный провод движется вдоль оси x со скоростью v в магнитном поле, которое изменяется вдоль x.

Рассмотрим случай на рисунке 3, на котором прямоугольная замкнутая проволочная петля, расположенная в плоскости xy, перемещается в направлении оси x со скоростью v. Центр петли xC удовлетворяет условию v = dxC / dt. Петля имеет длину ℓ в направлении оси y и ширину w в направлении оси x. Зависящее от времени пространственно меняющееся магнитное поле B(x) показано в направлении z. Магнитное поле на левой стороне равно B(xC − w / 2), а на правой стороне B(xC + w / 2). Электродвижущую силу можно найти либо с помощью закона Лоренца, либо, что эквивалентно, используя вышеизложенный закон индукции Фарадея.

Закон Лоренца

Заряд q в проводнике на левой стороне петли испытывает силу Лоренца q v × B k = −q v B(xC − w / 2) j   (j, k — единичные векторы в направлениях y и z; см. векторное произведение векторов), что вызывает ЭДС (работу на единицу заряда) v ℓ B(xC − w / 2) по всей длине левой стороны петли. На правой стороне петля аналогичное рассуждение показывает, что ЭДС равна v ℓ B(xC + w / 2). Две противоположные друг другу ЭДС толкают положительный заряд по направлению к нижней части петли. В случае, когда поле B возрастает вдоль х, сила на правой стороне будет больше, а ток будет течь по часовой стрелке. Используя правило правой руки, мы получаем, что поле B, создаваемое током, противоположно приложенному полю. ЭДС, вызывающая ток, должна увеличиваться по направлению против часовой стрелки (в отличие от тока). Складывая ЭДС в направлении против часовой стрелки вдоль петли мы находим:

E=vℓB(xC+w2)−B(xC−w2) .{\displaystyle {\mathcal {E}}=v\ell [B(x_{C}+w/2)-B(x_{C}-w/2)]\ .}

Закон Фарадея

В любой точке петли магнитный поток через неё равен:

ΦB=±∫ℓdy∫xC−w2xC+w2B(x)dx{\displaystyle \Phi _{B}=\pm \int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}B(x)dx}
=±ℓ∫xC−w2xC+w2B(x)dx .{\displaystyle \qquad =\pm \ell \int _{x_{C}-w/2}^{x_{C}+w/2}B(x)dx\ .}

Выбор знака определяется по принципу, имеет ли нормаль к поверхности в данной точке то же направление, что и B, или противоположное. Если нормаль к поверхности имеет то же направление, что и поле B наведённого тока, этот знак отрицательный. Производная по времени от потока (найденная с помощью методов дифференцирования сложной функции или по правилу Лейбница дифференцирования интеграла) равна:

dΦBdt=(−)ddxC∫ℓdy ∫xC−w2xC+w2dxB(x)dxCdt {\displaystyle {\frac {d\Phi _{B}}{dt}}=(-){\frac {d}{dx_{C}}}\left[\int _{0}^{\ell }dy\ \int _{x_{C}-w/2}^{x_{C}+w/2}dxB(x)\right]{\frac {dx_{C}}{dt}}\ }
=(−)vℓB(xC+w2)−B(xC−w2) ,{\displaystyle \qquad =(-)v\ell [B(x_{C}+w/2)-B(x_{C}-w/2)]\ ,}

(где v = dxC / dt является скоростью движения петли в направлении оси х), что приводит к:

E=−dΦBdt=vℓB(xC+w2)−B(xC−w2) ,{\displaystyle {\mathcal {E}}=-{\frac {d\Phi _{B}}{dt}}=v\ell [B(x_{C}+w/2)-B(x_{C}-w/2)]\ ,}

как и в предыдущем случае.

Эквивалентность этих двух подходов является общеизвестной, и в зависимости от решаемой задачи более практичным может оказаться либо тот, либо другой метод.

Элиу Томсон

Еще один шаг вперед сделал ученый занимавшийся изучением электричества в 1887 году химик и электрик британского происхождения Элиу Томсоном (1853-1937).

Бывший учитель средней школы, в 1880 году вместе с профессором Эдвардом Дж. Хьюстоном (1847-1914) основал американскую Электрическую компанию (позже Thomson-Houston Electric Company), производившую системы для дугового освещения, которые имели большой успех. В 1886 году они начали производить системы переменного тока для ламп накаливания и, работая на этой линии Томсон в 1887 году построил первый трансформатор с масляной изоляцией, способный к лучшей изоляции и охлаждению.

В 1888 году Элиу Томсон задумал трансформатор постоянного тока и электрическую контактную сварку, которая позволяла проводить ранее невозможные сварочные операции. Изобретение было использовано новой компанией -Thomson Electric Welding.
В 1892 году Элиу Томсон способствовал слиянию Thomson-Houston Electric Company и Edison General Electric Company, дав жизнь General Electric Company (GE). Он руководил исследовательской лабораторией компании, лабораторией Томсона, где разрабатывал тяговые двигатели, электрические счетчики, защитные устройства, рентгеновские аппараты и трехфазные генераторы переменного тока.

Элиу Томсон зарегистрировал почти 700 патентов и был одним из основателей Международной электротехнической комиссии и президентом Массачусетского технологического института с 1920 по 1923 год.

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Принцип действия

Действие клетки Фарадея основано на том факте, что заряд при попадании в проводник распределяется на его поверхности, в то время как внутренняя часть остаётся нейтральной. По сути вся клетка, состоящая из токопроводящего материала является единым проводником, «концы» которого приобретают противоположный заряд. Возникающий при этом электрический ток создаёт поле, компенсирующее внешнее воздействие. Напряжённость электрического поля во внутренней части такой конструкции равна нулю.

Интересно, что если поле сгенерировано внутри клетки, то эффект тоже работает. Однако при таком раскладе заряд распределится по внутренней поверхности сетки или другой проводящей плоскости и наружу проникнуть не сможет.

В англоязычной терминологии КФ звучит как «Faraday shield», то есть «щит/экран Фарадея». Это понятие хорошо передаёт суть устройства, которое, как щит или защитный экран, отражает воздействующие на его содержимое лучи.

Следует помнить, что экранирующий эффект работает только на переменном магнитном поле. Постоянному или слабопеременному магнитному воздействию, например, естественному магнитному потенциалу Земли, помех он не представляет.

Чтобы определить, отразит ли камера Фарадея высокочастотное излучение, достаточно знать размер ячеек сетки (если проводящая часть выполнена в виде клетки) и длину воздействующей волны. Конструкция эффективна, если вторая величина больше первой.

Watch this video on YouTube

Закон электромагнитной индукции Фарадея

И так, мы знаем, что наведенная электродвижущая сила в проводнике, движущемся в некотором магнитном поле, с определенной скоростью, а её величина зависит от скорости передвижения проводника. Но это еще не все, электродвижущая сила так же зависит от длины проводника, важна именно длина, которая находится под действием магнитного поля магнита, а еще зависит от индукции магнитного поля и от направления передвижения самого проводника.М.

Фарадей сформулировал закон электромагнитной индукции следующим образом:

Этот закон можно выразить формулой, где электродвижущая сила обозначается буквой e: Когда проводник движется не под прямым углом по отношению к магнитному полю, то формула имеет следующий вид:Где:e – электродвижущая сила; B – индукция магнитного поля; l – длина проводника; v – скорость перемещения проводника в магнитном поле;Sin ϕ – синус угла под которым производится перемещение относительно магнитного поля.Индуцирование электродвижущей силы в проводнике происходит лишь тогда, когда он перемещается в магнитном поле, то есть пересечение магнитными силовыми линиями не должно быть постоянным, а всегда изменятся. Электродвижущая сила в этом проводнике будит индуцироваться не зависимо от того, замкнута цепь проводника или нет.Как для протекания электрического тока, основным условием является наличие замкнутой цепи, так и для электродвижущей силы, главное условие ее наведения – это изменение силовых магнитных линий, пересекающих проводник.Заметьте, что движение проводника в магнитном поле не является основополагающим фактором индуцирования электродвижущая сила. Допускается и то, что проводник неподвижен, а перемещаться будит лишь магнитное поле, в котором находится этот проводник.

Что такое клетка Фарадея

Клетка Фарадея — это бокс со стенками из хорошо проводящего ток металла. Конструкция не требует подключения внешнего питания, но, как правило, заземляется. Физический эффект клетки проявляется под воздействием на неё внешнего фактора, в роли которого выступает электромагнитное излучение.

Первые конструкции для демонстрации экранирующего эффекта имели вид обычной клетки, что и дало название этому явлению. На самом деле проволочные или перфорированные стенки «коробки» удобны для визуального контроля предметов или приборов, находящихся внутри замкнутого пространства, но их легко можно заменить сплошными. Главное, чтобы материал был токопроводящим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector