Последовательность в открытии электричества

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями. Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Определение

Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.

Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).

Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:

Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.

Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).

Война токов в истории

В отличие от зрителей-неофитов данного кино, мы примерно знаем, какими методами велась “война токов”. Пленных в ней не брали, о нет, а удары наносились наотмашь и предельно жестоко. Джентльмены, ещё до Первой мировой войны возложившие на себя “бремя белого человека”, на самом деле не слишком задумывались о счастье для всех, даром, и чтобы никто не ушёл обиженным; в основе “войны токов” лежали деньги, увы. По словам римского императора Адриана, деньги — вот божество, которому поклоняются и христиане, и евреи, и всякого рода люди.

В финальных кадрах демонстрируются отснятые на кинетоскопе Эдисона кадры передвижений обезьяны, кошки, других животных — и человека. Мелькает и изображение движущегося слона. Это хорошая пасхалка для людей знающих: дело в том, что гуманист Эдисон ещё долго предпринимал попытки опорочить энергетическую систему Вестингауза. В частности, он организовал, отснял и распространил по всей Америке кадры, известные ныне как “Электрическая смерть слона” (легко ищется Гуглом). Слониха Топси, затоптавшая людей, была казнена при помощи генератора электричества переменного тока. В этот раз, правда, смерть оказалась мгновенной — в отличие от первой казни на электрическом стуле человека, которая из-за неверных расчётов напряжения и силы тока, тайно переданных Томасом Эдисоном руководству тюрьмы, превратилась в кошмар и для казнённого, и для его палачей.

The Weinstein Company

Ну, будем считать, что к тому времени киношная история благородной войны благородных изобретателей уже закончилась, и все неофиты успели выбежать из зала, а если кто и не успел, тот всё равно не понял замысла кинематографистов.

Эдисон был умелым предпринимателем

В том же году Тесла придумал, как использовать явление вращающегося электромагнитного поля, а значит он мог попытаться сконструировать электродвигатель переменного тока. С этой идеей ученый отправился в парижское представительство Continental Edison Company, но в тот момент компания была занята выполнением крупного заказа — сооружения электростанции для железнодорожного вокзала Страсбурга, в ходе выполнения которого возникли многочисленные ошибки. Теслу отправили спасать ситуацию, и в требуемые сроки электростанция была достроена. Сербский ученый отправился в Париж, чтобы получить обещанную премию в 25 000 долларов, однако компания отказалась выплачивать деньги. Оскорбленный Тесла решил больше не иметь ничего общего с предприятиями Эдисона. Он поначалу хотел даже отправиться в Петербург, ведь Россия славилась в то время своими научными открытиями в области электротехники, в частности изобретениями Павла Николаевича Яблочкова и Дмитрия Александровича Лачинова. Однако, один из работников Континентальной компании уговорил Теслу отправиться в США и дал ему рекомендательное письмо к Эдисону: «Было бы непростительной ошибкой дать возможность уехать в Россию подобному таланту. Я знаю двух великих людей: один из них Вы, второй — этот молодой человек».

Прибыв в Нью-Йорк в 1884 году, Тесла приступает к работе в компании Edison Machine Works в качестве инженера по ремонту двигателей — генераторов постоянного тока. Тесла сразу же поделился с Эдисоном своими мыслями насчет переменного тока, но американского ученого идеи сербского коллеги не вдохновили — он очень неодобрительно отозвался и посоветовал Тесле заниматься на работе сугубо профессиональными делами, а не личными изысканиями. Год спустя Эдисон предлагает Тесле конструктивно улучшить машины постоянного тока и за это обещает премию в 50 тысяч долларов. Тесла тут же принялся за работу и очень скоро предоставил 24 варианта новых машин Эдисона, а также новый коммутатор и регулятор. Эдисон работу одобрил, но деньги платить отказался, пошутив при этом, что эмигрант плохо понимает американский юмор. С этого момента Эдисон и Тесла стали непримиримыми врагами.

Boeing YAL-1

Самолет, который должен был сбивать противника лазером. /Фото: medium.com

Boeing YAL-1 — это концепт экспериментального боевого самолёта, которых должен был уничтожать вражеские объекты, в том числе баллистические ракеты, используя мощный химический (бортовой) лазер. Первые упоминания о подобной программе датируются еще концом восьмидесятых, однако первые реальные результаты были получены в 2002 году, когда был собран, оставшийся единственным, опытный образец самолета с необычной возможностью уничтожения вражеского оружия и техники.

Главным плюсом данной системы была возможность ликвидации стартующих баллистических и крылатых ракет с ядерной боевой частью еще на начальном участке траектории полета. Однако даже эта многообещающая технология оказалась беззащитна перед банальным сокращением военного бюджета США. Именно по этой причине в 2001 году проект был закрыт, а еще три года спустя единственный образец Boeing YAL-1 утилизировали.

Увеличение потерь энергии при использовании постоянного тока

Наиболее убедительным аргументом в пользу этого изменения является эффективность. Когда угольные и атомные электростанции подают напряжение в сеть с переменным током, который затем потребляется непосредственно лампочками и пылесосами, его эффективность составляет около 65 %. Другими словами, около трети электрической энергии теряется, например, за счет потерь тепла.

Сегодня ситуация заметно усугубилась. В результате использования фотогальванических систем и электростанций, наряду с увеличением использования батарей, все больше и больше электроэнергии подается в сеть, которая сначала должна быть преобразована из постоянного тока в переменный, что приводит к ее потерям. Потребители также страдают. Нагревающиеся адаптеры являются свидетельством потерь энергии. Это означает, что эффективность нашей энергосети составляет всего лишь 56 %. Следовательно, необходимо фундаментальное переосмысление этих процессов.

Альтернативой является использование технологий постоянного тока (DC), таких как высоковольтные линии передачи постоянного тока (HVDC) для подачи электроэнергии на большие расстояния, вместе с низковольтными сетями постоянного тока в домашних хозяйствах и промышленности. Они могут быть напрямую подключены к электронным устройствам или промышленным приводам без необходимости использования адаптера или трансформатора. При использовании фотогальванической системы на крыше жилого дома и электромобиля в гараже эффективность будет непревзойденной. Электрическая сеть, систематически настроенная на постоянный ток, обеспечит общую эффективность в 90 %. Если эффективность будет всего на 10 % выше, тогда две крупнейшие угольные электростанции в Германии могут быть отключены. Это позволит сэкономить 63 миллиона тонн CO2, или 12 % от общего объема выбросов электростанций в Германии. Для оксидов азота этот показатель еще выше — 29 %.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Преимущества переменного тока

Аккумуляторные батареи практичны как источник постоянного электричества. Однако бесконечно снабжать токоприёмники энергией без подзарядки они не могут. Поэтому создание изменяющегося во времени тока и его доставка потребителю – главные задачи энергосистемы страны. К преимуществам этого вида относятся:

  • лёгкость преобразования из одной величины напряжения в другую;
  • допустимость передачи на дальние расстояния по ЛЭП к распределительным сетям;
  • возможность реализовывать трёхфазные схемы энергоснабжения;
  • ориентированность на потребителей производственных предприятий, рассчитанных на питание переменным током.

Снизить или повысить величину напряжения переменного тока проще. Для этого стоит только пропустить его через трансформатор. Большой КПД этого преобразователя – 99%, потеря мощности – лишь 1%. Трансформатор, имея отдельные обмотки по напряжению, ещё разделяет высокое напряжение от низкого, что допускает возможность разделить установки до 1000 В и свыше 1000 В.

Атомные и гидроэлектростанции расположены в местах, отдалённых от центральных районов расположения потребителей. Поэтому напряжение добытой электроэнергии повышают до сотен кВт, чтобы снизить потери при транспортировке, и передают по ЛЭП в нужное место, где снова понижают.

Гидроэлектростанция – ГЭС

Применяя трёхфазное переменное напряжение, повышают производительность структуры энергосистемы. Передача одинаковой мощности трёхфазной сети требует меньшего количества проводников, в отличие от однофазной линии.

Важно! Если сравнить два трансформатора одинаковой мощности, то габариты однофазного трансформатора больше, чем трёхфазного. Изготовление асинхронных двигателей обходится дешевле, чем двигателей постоянного тока

В них отсутствуют коллектор и щётки, по мощности при одинаковых размерах асинхронные двигатели обгоняют постоянные в 2-3 раза.

Самый блестящий

У Тесла была идеальная визуальная память, то есть он мог очень точно запомнить изображения и объекты. Это позволяло ему без проблем визуализировать сложные трехмерные объекты, и, как результат, он мог построить рабочие прототипы, сделав для этого лишь пару чертежей. Он на самом деле работал над своими изобретениями в своем воображении. Эдисон же, напротив, всегда делал много эскизов и добивался всего тяжелым трудом. В его лаборатории всегда было полно различных элементов для разных его изобретений. Однако, в конце концов, у Эдисона было 1093 патента, в то время как Тесла собрал менее 300. Естественно, стоит отметить, что Тесла работал один, а Эдисон имел большое количество помощников – также некоторые патенты он просто купил.

Тяжёлая судьба. Наташа Королёва публично поздравила сестрёнку с днем рождения

Муж почистил мои старые наушники кусочком пластилина. Теперь они снова как новые

Кадры прямо из 1960 года: как выглядели фотосессии того времени

Лучший гость на ужине

В разгар своей карьеры Тесла был харизматичным, вежливым и остроумным. Он числился в друзьях у таких людей, как Марк Твен, Редьярд Киплинг и Джон Мьюр. Он вращался в очень высоких кругах. Но Тесла также мог быть и надменным. Кроме того, он был известен своей озабоченностью гигиеной. В последние годы преследовавшие его по жизни навязчивые идеи, например, боязнь женских сережек, стали намного сильнее. Он умер без гроша в отеле в Нью-Йорке. Эдисон, тем временем, был замкнутым и неразговорчивым, имел только самых близких друзей. У Эдисона также была и темная сторона, которую он постоянно демонстрировал в своих нападках в адрес Тесла в ходе «войны токов». Также он был советником по вопросам того, как создать электрический стул для казни, с удовольствием вдаваясь в детали о том, как именно будет происходить процесс.

Преимущества постоянного тока

  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.

Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Последние годы

В 1914 году в Сербии начались предпосылки к войне и Тесла организовал сбор средств для поддержки армии. Также он начал работать над созданием оружия которое смогло бы уничтожить войну раз и навсегда, но проект остался на стадии идеи. В 1915 году его номинировали на Нобелевскую премию, в тоже время что и Эдисона. Оба ученых настолько сильно ненавидели друг друга что оба отказались он нее лишь бы не делить это звание.

1917 год стал годом небольшого скандала, Николу наградили медалью Эдисона за достижения в области физики, но он отказался ее получать, аргументируя это тем что она носит имя лжеца и вора.

В 1917 году Тесла изобрел радио способ для подводного обнаружения различных военных объектов. Вплоть до 1926 года он работал над созданием бензиновой турбины по заказу одной из финансировавших его ранее компаний. В 1937 году во время ночной прогулки ученого сбила машина и он сломал себе ребра. Довольно долгое время он провел в больнице с воспалением легких которое возникло как осложнение после аварии. Когда ученый пошел на поправку он перебрался в отель, в котором жил. 7 января  1943 года к нему приехал с визитом его племянник, который стал последним человеком с которым общался Никола Тесла.

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

От теории к точной науке

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Закон взаимодействия зарядов

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.

Закон Кулона

Изобретение батареи

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта  в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Закон электрической цепи

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Электромагнитная индукция

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector