Что такое нейтрон в физике: строение, свойства и использование

Электроны и электричество

Электричество – это поток электронов через проводник, обычно в виде проволоки, этот поток называется электрическим током.

Чтобы этот поток произошел, электроны должны разорвать свою атомную связь (электричество – это поток электронов, а не их поток с ядрами, с которыми они связаны). Разрыв атомной связи между электроном и его ядром требует ввода энергии, которая заставляет электрон преодолевать электромагнитную силу, сдерживающую его, и таким образом свободно течь.

Проводящий материал

Все формы материи содержат электроны, однако в некоторых материалах они более свободно связаны с их ядрами. Эти материалы (известные как проводники или металлы) требуют очень мало энергии для создания электрического тока, потому что слабо связанные электроны требуют гораздо меньше энергии для преодоления электромагнитной силы, удерживающей их на месте.

Что генерирует поток электронов?

Поток электронов можно генерировать различными способами, но основные из них следующие:

  • Электрические генераторы – это устройства, использующие принцип электромагнитной индукции. Электромагнитная индукция это процесс перемещения проводника через магнитное поле с целью создания электронного потока. Требуется только относительное движение проводника и магнитного поля, что означает, что магнитное поле может двигаться, пока проводник неподвижен. Когда электроны в проводнике проходят через магнитное поле (если поле достаточно сильное, а относительная скорость проводников через поле достаточно быстрая), то связи с их ядрами будут разорваны и будет индуцирован поток. Для того чтобы вызвать высокий уровень электронного потока, необходимо большое количество энергии для создания относительной скорости между проводником и магнитами.
  • Химические реакции внутри батарей также создают электродвижущую силу, заставляющую электроны течь по цепи.
  • Фотоны (энергия света) также могут вызывать поток электронов, когда они сталкиваются с фотоэлектрической ячейкой расположенной в солнечной панели.

Таким образом, структура или состав атома определяет принадлежность к тому или иному химическому элементу.

Открытие

Открытие нейтрона (27 февраля ) принадлежит физику Джеймсу Чедвику, который объяснил результаты опытов В. Боте и Г. Беккера (), в которых обнаружилось, что вылетающие при распаде полония α-частицы, воздействуя на лёгкие элементы, приводят к возникновению сильно проникающего излучения. Чедвик первый предположил, что новое проникающее излучение состоит из нейтронов, и определил их массу. За это открытие он получил Нобелевскую премию по физике в 1935 году.

В 1930 году В. А. Амбарцумян и Д. Д. Иваненко показали, что атом не может, как считалось в то время, состоять только из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы.

В 1930 году Вальтер Боте и его студент Герберт Беккер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 году Ирен и Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и провёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 году Д. Д. Иваненко и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.

4 Масса покоя нейтрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E — напряженность электрического поля, H — напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную «теорию» — поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится. Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E2, что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

Строение нейтрона

Нейтрон присутствует в составе ядер атомов для каждого химического элемента, исключение составляет лишь атом водорода, ядро которого представляет собой один протон. Что такое нейтрон, какое строение он имеет? Хотя он и называется элементарным «кирпичиком» ядра, но все же имеет свою внутреннюю структуру. В частности, он относится к семейству барионов и состоит из трех кварков, два из которых являются кварками нижнего типа, а один — верхнего. Все кварки имеют дробный электрический заряд: верхний заряжен положительно (+2/3 от заряда электрона), а нижний — отрицательно (-1/3 электронного заряда). Именно поэтому нейтрон не имеет электрического заряда, ведь он у составляющих его кварков просто компенсируется. Тем не менее, магнитный момент нейтрона не равен нулю.

В составе нейтрона, определение которого было дано выше, каждый кварк соединен с остальными с помощью глюонового поля. Глюон является частицей, ответственной за образование ядерных сил.

Помимо массы в килограммах и атомных единицах массы, в ядерной физике массу частицы описывают также в ГэВ (гигаэлектронвольтах). Это стало возможным после открытия Эйнштейном своего знаменитого уравнения E=mc2, которое связывает энергию с массой. Что такое нейтрон в ГэВ? Это величина 0,0009396, которая немного больше аналогичной для протона (0,0009383).

2.4 Масса покоя протона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и протона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E — напряженность электрического поля, H — напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную «теорию» — поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя протона зависит от условий, в которых протон находится. Так поместив протон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E2, что отразится на массе протона и его стабильности. Аналогичная ситуация возникнет при помещении протона в постоянное магнитное поле. Поэтому некоторые свойства протона внутри атомного ядра, отличаются от тех же свойств свободного протона в вакууме, вдали от полей.

[править] Взаимодействие

Нейтрон участвует во всех четырех типах фундаментальных взаимодействий: электромагнитном, слабом, сильном и гравитационным взаимодействиях.

Гравитация действует на нейтрон, как и на любое энергетическое тело, однако гравитация настолько слаба, что ее можно не учитывать при экспериментах по физике частиц.

Самым значимым для нейтрона является сильное взаимодействие. Это взаимодействие отвечает за удерживание трех кварков у отдельной частицы. Остаточная мощная сила ответственна за удерживание нейтронов и протонов вместе в ядрах. Эта ядерная сила играет первостепенную роль, когда нейтроны проходят через материю. В отличие от заряженных частиц или фотонов, нейтрон не может терять энергию благодаря ионизации атомов. Наоборот, нейтрон беспрепятственно движется к лобовому столкновению с атомным ядром. Из-за этого нейтронное излучение является чрезвычайно проникающим.

Нейтроны, изотопы и радиоактивность

Частица, которая находится в ядре атома — нейтрон на 0,2% больше протона. Вместе они составляют 99,99% всей массы атома. Атомы одного и того же элемента могут иметь различное количество нейтронов. Когда ученые ссылаются на атомную массу, они имеют в виду среднюю атомную массу. Например, углерод обычно имеет 6 нейтронов и 6 протонов с атомной массой 12, но иногда он встречается с атомной массой 13 (6 протонов и 7 нейтронов). Углерод с атомным номером 14 также существует, но встречается редко. Итак, атомная масса для углерода усредняется до 12,011.

Когда атомы имеют различное количество нейтронов, их называют изотопами. Ученые нашли способы добавления этих частиц в ядро ​​для создания больших изотопов. Теперь добавление нейтронов не влияет на заряд атома, так как они не имеют заряда. Однако они увеличивают радиоактивность атома. Это может привести к очень неустойчивым атомам, которые могут разряжать высокие уровни энергии.

Свойства протона

Относится к барионам, имеет спин 12, электрический заряд +1 (в единицах элементарного электрического заряда). В физике элементарных частиц рассматривается как нуклон с проекцией изоспина +12 (в ядерной физике принят противоположный знак проекции изоспина). Состоит из трёх кварков (один d-кварк и два u-кварка). Стабилен.

Масса протона, выраженная в разных единицах, составляет (рекомендованные значения CODATA 2018 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):

  • 938,272 088 16(29) МэВ;
  • 1,007 276 466 621(53) а. е. м.;
  • 1,672 621 923 69(51)⋅10−27кг;
  • 1836,152 673 43(11) массы электрона.

Внутренняя чётность протона равна 1.

Отношение масс протона и электрона, равное 1836,152 673 43(11), с точностью до 0,002 % равно значению 6π5 = 1836,118…[значимость факта?]

Внутренняя структура протона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий (2 ГэВ) с протонами (Нобелевская премия по физике 1961 г.). Протон состоит из тяжёлой сердцевины (керна) радиусом ≈0,25·10−13 см, с высокой плотностью массы и заряда, которая несёт ≈35%{\displaystyle \approx 35\,\%} электрического заряда протона, и окружающей его относительно разреженной оболочки. На расстоянии от ≈0,25·10−13 до ≈1,4·10−13 см эта оболочка состоит в основном из виртуальных ρ- и π-мезонов, несущих ~50% электрического заряда протона, затем до расстояния ≈2,5·10−13 см простирается оболочка из виртуальных ω- и π-мезонов, несущих ~15 % его заряда.

Давление в центре протона, создаваемое кварками, составляет порядка 1035Па (1030атмосфер), то есть выше давления внутри нейтронных звёзд.

Магнитный момент протона измеряется путём измерения отношения резонансной частоты прецессии магнитного момента протона в заданном однородном магнитном поле и циклотронной частоты обращения протона по круговой орбите в том же самом поле. Он равен 2,792 847 344 63(82) ядерного магнетона, или 1,410 606 797 36(60)×10-26Дж/Тл.

С протоном связаны несколько физических величин, имеющих размерность длины, в частности:

  • комптоновская длина волны λK=2πℏmc≈1,32⋅10−13{\displaystyle \lambda _{K}={2\pi \hbar }/{mc}\approx 1{,}32\cdot 10^{-13}} см;
  • среднеквадратический радиус распределения электрического заряда (электрический радиус) rE≈0,8418410−13{\displaystyle r_{E}\approx 0{,}8418410^{-13}} см (см. ниже);
  • гравитационный радиус RG=2Gmc2≈2,48⋅10−52{\displaystyle R_{G}={2Gm}/{c^{2}}\approx 2{,}48\cdot 10^{-52}} см.

Измерения электрического радиуса протона с помощью атомов обычного водорода, проводимые разными методами с 1960-х годов, привели (CODATA-2014) к результату 0,8751 ± 0,0061 фемтометра (1 фм = 10−15 м). Первые эксперименты с атомами (где электрон заменён на мюон) дали для этого радиуса на 4 % меньший результат 0,84184 ± 0,00067 фм. Причины этого различия окончательно не выяснены. Измерения лэмбовского сдвига в атоме обычного водорода, проведённые в 2019 году, дали значение 0,833±0,010 фм, что хотя и согласуется с данными, полученными из мюонного водорода, но по-прежнему противоречит данным старых экспериментов. Позже в 2019 году были опубликованы результаты эксперимента PRad, выполненного в Лаборатории Джефферсона группой учёных под руководством А. Гаспаряна, в котором для определения радиуса протона использовалось рассеяние электронов. Результат оказался равен 0,831±0,007±0.012 фм.

Так называемый слабый заряд протона Qw ≈ 1 − 4 sin2θW, определяющий его участие в слабых взаимодействиях путём обмена Z-бозоном (аналогично тому как электрический заряд частицы определяет её участие в электромагнитных взаимодействиях путём обмена фотоном), составляет 0,0719 ± 0,0045, согласно экспериментальным измерениям нарушения чётности при рассеянии поляризованных электронов на протонах. Измеренная величина в пределах экспериментальной погрешности согласуется с теоретическими предсказаниями Стандартной модели (0,0708 ± 0,0003).

Экспериментальный поиск

Поскольку распад протона — случайный процесс, было предложено в качестве объекта наблюдения выбрать большой объём воды, в одном кубометре которой содержится около 6⋅1029 нуклонов (из них около половины протонов). Если теория Джорджи и Глэшоу верна, и каждый протон имеет один шанс из ~1031 распасться в одном конкретно выбранном году, то теоретически наблюдение распада хотя бы нескольких протонов в многотонной водной мишени в течение года должно быть реальным.

Физики организовали несколько крупномасштабных экспериментов, в ходе которого предполагалось наблюдать распад хотя бы единичных протонов. Поскольку вспышки так называемого черенковского излучения, которые и сигнализируют об образовании новых частиц (в том числе, в результате распада протона), могут быть вызваны космическими лучами, было решено проводить эксперимент глубоко под землёй. Детектор IMB (Irvin-Michigan-Brookhaven) разместился в выработках бывших соляных копей на берегу озера Эри в штате Огайо. Здесь 7000 тонн воды были окружены 2048 фотоумножителями. Параллельно в Японии группа учёных Токийского университета и ряда других научных организаций в подземной лаборатории Камиока создала детектор Камиоканде (Кamiokande — Кamioka Nucleon Decay Experiment), где 3000 тонн воды просматривались 1000 фотоумножителей. Однако к концу 80-х годов ни одного случая распада протона зафиксировано не было. В 1995 году коллаборация Камиоканде построила новый детектор, увеличив массу воды до 50 000 тонн (Super-Kamiokande). Наблюдения на этом детекторе продолжаются по сей день, но результат поисков распада протона на достигнутом уровне чувствительности по-прежнему отрицателен.

Кроме распада на пион и позитрон (текущее ограничение на время жизни по этому каналу, как отмечено выше, составляет 1,01⋅1034 лет), выполнялись экспериментальные поиски свыше 60 других вариантов каналов распада, как для протона, так и для нейтрона (в последнем случае имеется в виду не стандартный бета-распад нейтрона, а распад с несохранением барионного числа, например n→μ+π-). Поскольку предпочтительный канал распада, вообще говоря, неизвестен, устанавливаются также экспериментальные нижние ограничения на время жизни протона независимо от канала распада. Лучшее из них на текущий момент равно 1,1⋅1026 лет. Нижнее ограничение на время жизни протона при распаде с образованием только «невидимых» частиц (то есть не участвующих в сильном или электромагнитном взаимодействиях, например нейтрино) составляет 2,1⋅1029 лет. Следует отметить, что распад протона по «невидимым» каналам нарушает законы сохранения не только барионного числа, но и электрического заряда; это не относится к распаду нейтрона.

Хотя ожидается, что времена жизни протона и антипротона одинаковы, были получены экспериментальные нижние ограничения на время жизни антипротона. Они значительно уступают ограничениям на время жизни протона: лучшее ограничение — лишь порядка 107 лет.

Некоторые теории предсказывают также распад пар или троек нуклонов (с изменением барионного числа на 2 или 3 единицы) при стабильности одиночных нуклонов. Для различных каналов распада «динуклонов» (пар pp, nn, pn) в ядрах железа установлены нижние ограничения на время жизни ядра на уровне единиц ⋅1030 лет.

Таким образом, установлено, что протон как минимум в 1000 раз стабильнее, чем это предсказано в минимальной SU(5)-теории. В различных вариантах теории суперсимметрии время жизни протона предсказывается на уровне установленных в настоящее время ограничений и выше. Для проверки этой теории организован проект LAGUNA с чувствительностью на уровне 1035 лет. Предполагается также, что важную роль в решении этой проблемы сыграет Большой адронный коллайдер, с помощью которого теория суперсимметрии могла бы быть подтверждена экспериментально.

Опасны ли одиночные нейтроны?

Что такое нейтрон? Это частица, которая наряду с протоном входит в состав ядра атома. Однако иногда они могут существовать сами по себе. Когда нейтроны находятся вне ядер атомов, они приобретают потенциально опасные свойства. Когда они двигаются с высокой скоростью, они производят смертельную радиацию. Так называемые нейтронные бомбы, известные своей способностью убивать людей и животных, при этом оказывают минимальное влияние на неживые физические структуры.

Нейтроны являются очень важной частью атома. Высокая плотность этих частиц в сочетании с их скоростью придает им чрезвычайную разрушительную силу и энергию

Как следствие, они могут изменить или даже разорвать на части ядра атомов, которые поражают. Хотя нейтрон имеет чистый нейтральный электрический заряд, он состоит из заряженных компонентов, которые отменяют друг друга относительно заряда.

Нейтрон в атоме — это крошечная частица. Как и протоны, они слишком малы, чтобы увидеть их даже с помощью электронного микроскопа, но они там есть, потому что это единственный способ, объясняющий поведение атомов. Нейтроны очень важны для обеспечения стабильности атома, однако за пределами его атомного центра они не могут существовать долго и распадаются в среднем всего лишь за 885 секунд (около 15 минут).

Что такое нейтрон

К началу 30-х годов физики уже открыли протоны и электроны. Они знали, что протоны находятся внутри ядер атомов. Однако они поняли, что масса ядра не соответствовала тому, сколько заряда было в ядре. Чтобы объяснить это несоответствие, большинство ученых в то время считали, что некоторые протоны в ядре связаны с «ядерными электронами». Они ожидали, что эти электроны будут внутри ядра. Таким образом, эти «парные» протоны будут по-прежнему вносить вклад в массу ядра, но они не смогут вносить вклад в заряд, поскольку их положительный заряд эффективно «нейтрализуется» отрицательными зарядами электронов. Во время бета-минус излучения электроны, по-видимому, выходят из ядра, и это наблюдение, похоже, также подтверждает гипотезу о том, что электроны находятся внутри ядра атома.

Однако с этим объяснением возникла проблема: у электронов, выходящих из ядра, не было столько энергии, сколько предсказывала модель. Между тем, в эксперименте, где некоторые легкие ядра бомбардировались альфа-частицами, было обнаружено, что ядро ​​излучало некоторые частицы, которые показали лучшую проникающую способность, чем протоны. Джеймс Чедвик обнаружил, что эти излучаемые частицы были нейтральными, и решил назвать их «нейтронами».

Сэр Джеймс Чедвик

Сегодня мы знаем, что нейтроны составляют ядро ​​атома вместе с протонами. Они немного тяжелее протонов и не несут заряда. Мы также знаем, что они самих себя сделаны из кварков, три валентность кварки («вверх» и два «вниз» кварка) и «море» других кварков, которые постоянно появляются и исчезают. Поскольку они сделаны из кварков, в Стандартной модели физики частиц они классифицируются как «адроны».

Исследования

Энергия тепловых нейтронов сравнима с энергией тепловых колебания атомов в твердом теле, а λn — с межатомным расстоянием. При прохождении тепловых нейтронов через вещество они могут существенно менять свою энергию, приобретая или отдавая её тепловым колебаниям атомов или молекул. По величине таких изменений может быть получен фононный спектр вещества. При рассеянии тепловых нейтронов на монокристаллах имеет место дифракция нейтронов.

Отдельные исследования

Холодные нейтроны используются для изучения медленных диффузионных движений атомов и молекул в различных средах, а также для исследования белковых макромолекул, полимеров, микродефектов и микро-неоднородностей в растворах и сплавах.

Ультрахолодные нейтроны полностью отражаются от большинства материалов за счет своеобразного «отталкивания» их веществом. Это явление подобно полному внутреннему отражению света на границе двух сред и может быть описано мнимым показателем преломления для нейтронного излучения с длиной волны λn > 500 Å. Благодаря этому ультрахолодные нейтроны можно накапливать и длительное время (сотни секунд) хранить в замкнутых сосудах.

Наличие у нейтронов магнитно-дипольного момента вызывает магнитное рассеяние нейтрона на атомарных электронах, что даёт возможность изучать структуру и динамику магнитных материалов.

Предметом исследования нейтронной физики является также свойства самого нейтрона как элементарной частицы. Большое значение для физики слабого взаимодействия имеет точное измерение времени жизни нейтрона . Многие расширения Стандартной Модели предсказывают наличие у нейтрона ненулевого электрического дипольного момента, а также существование нейтрон-антинейтронных осцилляций.

Значение

Результаты нейтронно-физических исследований имеют особое практическое значение в связи с проблемами получения ядерной энергии, так как в процессе ядерного деления и термоядерного синтеза нейтроны играют основную роль.

6 Новая физика: Нейтрон (элементарная частица) — итог

Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного «верхнего» (u) и двух «нижних» (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов — в этом и заключается НАУКА.

Владимир Горунович

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector