Митохондрия

Строение

Митохондрии состоят из трёх взаимосвязанных компонентов:

  • наружной мембраны;
  • внутренней мембраны;
  • матрикса.

Внешняя гладкая мембрана состоит из липидов, между которых находятся гидрофильные белки, образующие канальцы. Сквозь эти канальцы проходят молекулы при транспорте веществ.

Наружная и внутренняя мембраны находятся на расстоянии 10-20 нм. Межмембранное пространство заполнено ферментами. В отличие от ферментов лизосом, участвующих в расщеплении веществ, ферменты межмембранного пространства переносят остатки фосфорной кислоты к субстрату с затратой АТФ (процесс фосфорилирования).

Внутренняя мембрана упакована под внешней мембраной в виде многочисленных складок – крист.Они образованы:

  • липидами, проницаемыми только для кислорода, углекислого газа, воды;
  • ферментными, транспортными белками, участвующими в окислительных процессах и транспорте веществ.

Здесь за счёт дыхательной цепи происходит вторая стадия клеточного дыхания и образование 36 молекул АТФ.

Между складками находится полужидкое вещество – матрикс.В состав матрикса входят:

  • ферменты (сотни разных видов);
  • жирные кислоты;
  • белки (67 % белков митохондрий);
  • митохондриальная кольцевая ДНК;
  • митохондриальные рибосомы.

Наличие рибосом и ДНК свидетельствует о некоторой автономности органоида.

Рис. 1. Строение митохондрий.

Ферментативные белки матрикса участвуют в окислении пирувата – пировиноградной кислоты в ходе клеточного дыхания.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений.  В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Дыхание

Процесс окисления, т.е. клеточного дыхания, происходит в матриксе и на внутренних мембранах митохондрии. При метаболизме сложные вещества расщепляются до мономеров. Крахмал распадается до глюкозы, которая в бескислородной среде цитоплазмы расщепляется до пировиноградной кислоты (ПВК). При этом образуется две молекулы АТФ. В присутствии кислорода ПВК окисляется до углекислого газа и воды, т.е. осуществляется процесс дыхания в митохондриях.

Окисление происходит в два этапа:

  • в матриксе – образуется углекислый газ, водород и 2 молекулы АТФ (цикл Кребса);
  • на кристах – окисление водорода, образование воды и 36 молекул АТФ.

Дыхание на кристах (транспорт электронов) осуществляется с помощью дыхательной цепи, являющейся частью окислительного фосфорилирования (образования АТФ) и состоящей из двух компонентов:

  • белковых комплексов (I, III и IV), встроенных в мембрану;
  • белковых молекул-переносчиков (цитохром и убихинон).

Всего образуется 38 молекул АТФ, которые используются в процессах анаболизма. Вот почему митохондрии называют энергетическими станциями клеток.

Рис. 2. Схема дыхания в митохондриях.

Число митохондрий зависит от типа клетки и выполняемых функций. Чем выше потребность в энергии, тем больше митохондрий находится в клетке (до 2500).

Процесс пошел

Какая же польза амебе от присутствия митохондрий? Оказалось — огромная, о которой она не могла и мечтать. За счет митохондрии анаэробная амеба стала аэробной: приобрела способность использовать кислород воздуха. В результате такого сожительства жизнь амебы резко изменилась. Она не только перестала бояться кислорода, он даже стал необходимым для нее. За счет этого изменился обмен веществ, она стала более полно усваивать пищу, а это положительно сказалось на ее здоровье и самочувствии. Так что митохондрия не обманула, когда говорила, что пригодится в хозяйстве.

Амеба по секрету рассказала о своем приобретении подружке, та (тоже по секрету) — своей. Вскоре эта новость разнеслась по всему заливу, где они обитали, затем — все дальше и дальше… Наверное, вряд ли кому когда-то посчастливится стать таким же знаменитым, как наша амеба. Каждое живое существо огромного океана знало имя амебы и следило за ее самочувствием. Ведь для большинства из них амеба была «подопытным кроликом».

Вскоре наиболее отважные (а может быть — бóльшие модники) начали заводить в своем «доме» (т.е. в клетке) собственных митохондрий. Желающих становилось все больше и больше. Вскоре появился дефицит митохондрий, их стало не хватать на всех. Живые существа начали гоняться за каждой митохондрией, предлагая лучшие условия жизни, чем у соседей. Вскоре в ход пошли иные существа, которые обитали в огромном океане. Одни уговорили жить с ними мельчайших клеток водорослей, другие — спирохет… В любом сообществе (или обществе, если говорить о людях) есть состоятельные особи, а есть и бедные. Соответственно, они смогли пригласить для жилья разное количество организмов. У одних такой союз быстро распадался, как и браки у людей. У других он был более длительным.

Так появились современные клетки, внутри которых обитают митохондрии.

Почему сожительство амебы и митохондрии стало таким длительным и счастливым? Это, скорее всего, связано с тем, что амеба не эксплуатировала своих квартирантов. Митохондрии внутри клетки хозяина сохранили некоторую независимость. Они имеют собственную генетическую информацию, записанную в ДНК, сами синтезируют некоторые белки, способны размножаться делением, могут перемещаться внутри клетки хозяина . При делении клетки хозяина часть митохондрий переходит в новую клетку, и они достаточно быстро восстанавливают свою численность по согласованию с хозяином. А вот существовать отдельно от клетки-хозяина они уже не могут — разучились. Сейчас почти во всех клетках современных растений, грибов и животных продолжают жить эти квартиранты, став необходимой их частью.

Функции митохондрий

Строение митохондрии напрямую взаимосвязано с выполняемыми функциями. Основная из них заключается в осуществлении синтеза аденозинтрифосфата (АТФ). Это макромолекула, которая случит основным переносчиком энергии в клетке. В ее состав входит азотистое основание аденин, моносахарид рибоза и три остатка фосфорной кислоты. Именно между последними элементами заключено основное количество энергии. При разрыве одной из них максимально ее может выделиться до 60 кДж. В целом прокариотическая клетка содержит 1 млрд молекул АТФ. Эти структуры постоянно находятся в работе: существование каждой из них в неизменном виде не продолжается больше одной минуты. Молекулы АТФ постоянно синтезируются и расщепляются, обеспечивая организм энергией в тот момент, когда это необходимо.

По этой причине митохондрии называют «энергетическими станциями». Именно в них происходит окисление органических веществ под действием ферментов. Энергия, которая при этом образуется, запасается и хранится в виде АТФ. К примеру, при окислении 1 г углеводов образуется 36 макромолекул этого вещества.

Строение митохондрии позволяет им выполнять еще одну функцию. Благодаря своей полуавтономности они являются дополнительным носителем наследственной информации. Ученые установили, что ДНК самих органелл не могут функционировать самостоятельно. Дело в том, что они не содержат всех необходимых для своей работы белков, поэтому заимствуют их в наследственном материале ядерного аппарата.

Итак, в нашей статье мы рассмотрели, что такое митохондрии. Это двумембранные клеточные структуры, в матриксе которых осуществляется ряд сложных химических процессов. Результатом работы митохондрий является синтез АТФ — соединение, которое обеспечивает организм необходимым количеством энергии.

Строение и функции митохондрии

Митохондрия состоит из

Внешняя и внутренняя мембраны выполняют разные функции, поэтому различается их химический состав. Расстояние между мембранами составляет до 10 нм. Внешняя мембрана митохондрий по строению схожа с плазмалеммой, окружающей клетку, и выполняет в основном барьерную функцию, отграничивая содержимое органоида от цитоплазмы. Через нее проникают мелкие молекулы, транспорт крупных избирателен. В некоторых местах внешняя мембрана соединена с ЭПС, каналы которой открываются в митохондрию.

На внутренней мембране, в основном ее выростах — кристах, располагаются ферменты, образуя мультиферментативные системы. Поэтому по химическому составу здесь преобладают белки, а не липиды. Количество крист варьирует в зависимости от интенсивности процессов. Так в митохондриях мышц их очень много.

В некоторых местах внешняя и внутренняя мембрана соединяются между собой.

У митохондрий, также как у хлоропластов, есть своя белоксинтезирующая система — ДНК, РНК и рибосомы. Генетический аппарат представляет собой кольцевую молекулу – нуклеоид, как у бактерий. Рибосомы митохондрий растений схожи с бактериальными, у животных митохондриальные рибосомы мельче не только цитоплазматических, но и бактериальных. Часть необходимых белков митохондрии синтезируют сами, другую часть получают из цитоплазмы, так как эти белки кодируются ядерными генами.

Главная функция митохондрий — снабжать клетку энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений и запасается в АТФ. Часть реакций идет с участием кислорода, в других выделяется углекислый газ. Реакции идут как в матриксе (цикл Кребса), так и на кристах (окислительное фосфорилирование).

Следует иметь в виду, что в клетках АТФ синтезируется не только в митохондриях, но и в цитоплазме в процессе гликолиза. Однако эффективность этих реакций невысока. Особенность функции митохондрий в том, что в них протекают реакции не только бескислородного окисления, но и кислородный этап энергетического обмена.

Другими словами, функция митохондрий – активное участие в клеточном дыхании, к которому относят множество реакций окисления органических веществ, переноса протонов водорода и электронов, идущих с выделением энергии, которая аккумулируется в АТФ.

Что такое митохондрии

Движение является важным составляющим фактором человеческой жизни. Однако, движение происходит благодаря энергии, которая в свою очередь поступает через еду, воду, кислород. Для преобразования вышеуказанных элементов в энергию, которая так необходима человеку для жизненных потребностей, в человеческом организме находятся одни из самых важных и трудолюбивых звеньев живой клетки — митохондрии. Отсутствие митохондрий делает невозможным функционирование клетки. Количество митохондрий в живой клетке зависит от ее активности и составляет в среднем от двухсот до нескольких тысяч. В молодых растущих и активно функционирующих клетках организма митохондрий гораздо больше, чем в старых. Объем митохондрии составляет около двадцати пяти процентов от объема живой клетки.

Считается, что митохондрии произошли из древнего симбиоза, возникшего в период поглощения ядросодержащей клеткой аэробный прокариот. Захваченная клетка начала полагаться на защитную среду хозяйской клетки, которая, в свою очередь, полагалась на поглощенный прокариот для производства энергии. По прошествии времени потомки поглощенного прокариота превратились в митохондрии

Их работа с использованием кислорода для создании энергии стала критически важной для эволюции эукариота. Современные митохондрии имеют огромное сходство с некоторыми современными прокариотами несмотря на прошедший многовековой период со времен древнего симбиотического события

Митохондрии представляют собой маленькие энергетические станции клеток, которые вырабатывают необходимую энергию для живых клеток. Расположена митохондрия в цитоплазме клетки и способна занимать до двадцати процентов ее объема. Митохондрий в организме огромное количество, они используют углеводы и кислород для производства энергии. Формы и размеры митохондрий бывают разнообразные, по большей части они вытянутые округлой формы, способные достигать длины до десяти микрометров. Митохондрии могут быть неподвижными, а также передвигаться по живой клетке. Они всегда продвигаются в пространство, в котором больше всего необходима выработать энергию.

Митохондрия достаточно самостоятельная органелла, имеющая свою собственную систему по синтезу белка — рибосомы, РНК, ДНК. Собственная генетическая система митохондрии отделена от генома клетки. Определенное количество белков митохондрии способны синтезировать самостоятельно, а часть получать из цитоплазмы.

Митохондрии считаются полуавтономными, так как частично зависят от клетки для репликации и роста. Как и бактерии, митохондрии имеют кольцевую ДНК, реплицируются репродуктивным процессом, который называется бинарным делением. Таким образом, митохондрии способные к размножению органеллы. Их обновление происходит в течении всего клеточного цикла. Воспроизведение митохондрий происходит путем их деления, то есть распадения органеллы на новые две митохондрии благодаря возникшей в середине митохондрии перегородке. Процесс их деления независим от деления клетки. Кроме того, до репликации эти органеллы способны сливаться воедино одна с другой. Длительность жизни митохондрий составляет несколько дней.   

Митохондриальная патология

Мутации, происходящие в геноме митохондрии, приводят к удручающим последствиям. Носителем наследственной информации человека является ДНК, которая передается потомкам от родителей, а митохондриальный геном передается только от матери. Объясняется данный факт очень просто: цитоплазму с заключенными в ней хондриосомами дети получают вместе с женской яйцеклеткой, в сперматозоидах они отсутствуют. Женщины с данным отклонением могут передать потомству митохондриальное заболевание, больной мужчина – нет.

В обычных условиях хондриосомы располагают одинаковой копией ДНК — гомоплазмия. В геноме митохондрии могут происходить мутации, вследствие совместного существования здоровых и мутированных клеток возникает гетероплазмия.

Благодаря современной медицине на сегодняшний день выявлены более 200 заболеваний, поводом возникновения чего послужила мутация митохондрии ДНК. Не во всех случаях, но терапевтическому поддержанию и лечению митохондриальные болезни поддаются хорошо.

Вот мы и разобрались с вопросом о том, что такое митохондрии. Как и все остальные органеллы, они очень важны для клетки. Они косвенно принимают участие во всех процессах, для которых нужна энергия.

Пластиды

Дополнительными органеллами растительной клетки, схожими по строению и функциям с митохондриями, являются пластиды. Они состоят из двух или четырёх мембран и бывают трёх видов:

  • лейкопласты;
  • хромопласты;
  • хлоропласты.

Лейкопласты – бесцветные органеллы, которые зачастую находятся в корнях растений (не на свету). Они накапливают питательные вещества, например, в виде крахмала. На свету в лейкопластах образуется хлорофилл – зелёный пигмент.

Хромопласты содержат пигменты разных цветов (красный, жёлтый, фиолетовый). Они находятся в лепестках цветов и придают окраску венчику для привлечения насекомых.

Хлоропласты содержат пигменты (хлорофилл, каротиноид, ксантофилл), с помощью которых осуществляется процесс фотосинтеза. Внутри содержится студенистое вещество – строма, отвечающее за тёмную фазу фотосинтеза. В строме находятся ДНК, масла, рибосомы, а также мембранные структуры – тилакоиды, которые образуют граны, похожие на стопки монет. Тилакоиды отвечают за световую фазу фотосинтеза. Хлоропласты могут превращаться в лейкопласты или хромопласты.

Рис. 3. Внутреннее строение хлоропласта.

Растительные клетки содержат и пластиды, и митохондрии.

Что мы узнали?

Из урока 9 класса узнали о строении и функциях митохондрии. Это относительно автономные органеллы с собственной ДНК, которые осуществляют клеточное дыхание (окисление) и накапливают энергию (образуют АТФ). Помимо митохондрий в растительных клетках находятся пластиды, которые бывают трёх видов. Лейкопласты накапливают энергию в виде полисахаридов, хлоропласты осуществляют фотосинтез, хромопласты придают яркую окраску.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Происхождение митохондрий: теория эндосимбионтов

В своей статье 1967 года «О происхождении митозирующих клеток», опубликованной в «Журнале теоретической биологии», ученая Линн Маргулис предложила теорию, объясняющую, как образовались эукариотические клетки вместе с их органеллами. Она предположила, что митохондрии и хлоропласты растений когда-то были свободноживущими прокариотическими клетками, которые были поглощены примитивной эукариотической клеткой-хозяином.

Гипотеза Маргулиса теперь известна как «теория эндосимбионтов». Деннис Сирси, почетный профессор Массачусетского университета в Амхерсте, объяснил это следующим образом:

«Две клетки начали жить вместе, обмениваясь каким-либо субстратом или метаболитом (продуктом метаболизма, таким как АТФ). Объединение стало обязательным, так что теперь клетка-хозяин не может жить отдельно».

Несмотря на подтверждение бактериального наследия митохондрий, теория эндосимбионтов продолжает изучаться. «Один из самых больших вопросов сейчас — «Кто является клеткой-хозяином?». Как отмечает Грей в своей статье, остаются вопросы о том, возникли ли митохондрии после возникновения эукариотической клетки (как это было предположено в теории эндосимбионтов) или же возникли митохондрии и клетки-хозяева одновременно.

Принципы митохондриального питания

Основой для обновления и жизнедеятельности митохондрий являются полезные жиры и насыщенные кислоты. При недостаточном их потреблении развивается дисфункция, которая проявляется следующим образом:

  • частые обострения хронических заболеваний;
  • резкое старение кожи;
  • отсутствие жизненных сил, хроническая усталость;
  • набор веса, сложности с похудением.

Врач Джозеф Меркола разработал специальную митохондриальную метаболическую терапию для увеличения числа митохондрий, восстановления их поврежденной ДНК. Она основана на повышенном содержании жиров на фоне снижения белков и углеводов. В ежедневном рационе должны присутствовать:

  • морская рыба, богатая аминокислотой Омега-3;
  • большое количество растительной пищи (овощи, фрукты, ягоды);
  • семена льна и чиа;
  • молочные продукты.

Сократите употребление сладостей, сдобной выпечки и меда, откажитесь от фруктов с высоким гликемическим индексом (арбуза, дыни, винограда, бананов). Это уменьшит уровень глюкозы в крови, снизит риск онкологических заболеваний. Дополнительно принимайте витаминный комплекс, содержащий магний, калий, альфа-липоевую кислоту и L-карнитин.

Митохондрии являются единственным клеточным механизмом, который вырабатывает энергию из жиров. По теории доктора Патрика Варбурга употребление еды на ночь приводит к избытку топлива и свободных радикалов в организме. Запускается процесс преждевременного старения, набирается лишний вес, после пробуждения отсутствует бодрость и жизненные силы.

Митохондрии – это органы клеток, составляющих ткани. Применение принципов питания митохондриальной метаболической терапии повышает их уровень, укрепляет мембрану и защищает от повреждения. Диета насыщает полезными жирами, снижая риск рака и хронических воспалений, замедляет старение.опубликовано econet.ru

*Статьи Эконет.ру предназначены только для ознакомительных и образовательных целей и не заменяет профессиональные медицинские консультации, диагностику или лечение. Всегда консультируйтесь со своим врачом по любым вопросам, которые могут у вас возникнуть о состоянии здоровья.

Подписывайтесь на наш youtube канал!

https://youtube.com/watch?v=GUuucLcMh38

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! econet

Митохондриальная ДНК

Основная статья: Митохондриальная ДНК

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 105 раз меньше ДНК, локализованной в ядре. В целом митохондриальная ДНК кодирует 2 рРНК, 22 тРНК и 13 субъединиц ферментов дыхательной цепи, что составляет не более половины обнаруживаемых в ней белков. В частности, под контролем митохондриального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с-редуктазы. При этом все белки, кроме одного, две рибосомные и шесть транспортных РНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ATA вместо изолейцина в стандартном коде кодирует аминокислоту метионин, кодоны AGA и AGG, обычно кодирующие аргинин, являются стоп-кодонами, а кодон TGA, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четыре кодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70S-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.

В специализированных (не делящихся) клетках митохондрии обычно не делятся. Обновление пула митохондрий в этом случае происходит путём созревания митохондрий из протомитохондрий, имеющих исходно диаметр 0,1-0,2 микрона. Откуда берутся протомитохондрии неизвестно, но предполагается, что затравкой для них служит ДНК постмитохондрий, высвобождающаяся в цитоплазму. Протомитохондрии обладают высокой скоростью дыхания, но невысоким дыхательным контролем (Векшин Н. Л. и др. 2004—2014).

Различия в генах митохондрий

В ходе эволюции большая часть генома митохондрий была перенесена в ядро клетки, однако часть мтДНК была сохранена и все еще функциональна. Здесь и обнаруживается основное отличие митохондрии растений и животных, ведь ни смотря на то, что они не различаются по своей базовой структуре, их «остаточные» геномы совершенно разные.


Карта митохондриального генома человека

У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид.

Мутации митохондрий

Как мы уже выяснили, митохондрии имеют свой генетический материал в виде кольцевой ДНК (может быть одна или несколько). С возрастом в митохондриальной ДНК накапливаются различные повреждения. Могут быть как точечные мутации, так и крупные повреждения (например, «частая» делеция 4977bp). Когда доля мутантных митохондрий в клетке достигает определенного порога возникает их дисфункция.

Есть несколько теорий почему возникают повреждения в мтДНК.

  • Повреждение свободными радикалами;
  • Ошибки репликации, клональная экспансия. Еще на этапе оплодотворения яйцеклетки могут передаваться мутантные митохондрии, количество которых увеличивается с возрастом;
  • «Войны» митохондрий между собой и иммунитетом. Эгоистичная мтДНК. Если митохондриальная ДНК выходит из митохондрии, то она является триггером иммунного воздействия.

Мы не сдаем анализы на «здоровость» своих митохондрий, но это не отменяет того факта, что нарушение их работы ведет к различным проблемам со здоровьем. К ним относятся неврологические проблемы, проблемы с сердцем, диабет, ожирение и, банально, ускоренное старение.

Как они устроены?

Для понимания, что такое митохондрии, необходимо узнать их строение. Этот необычный источник энергии имеет форму шара, но чаще вытянут. Две мембраны располагаются близко друг к другу:

  • наружная (гладкая);
  • внутренняя, которая образует выросты листовидной (кристы) и трубчатой (тубулы) формы.

Если не принимать во внимание размер и форму митохондрии, строение и функции у них одинаковые. Хондриосома разграничена двумя мембранами, размером 6 нм

Наружная мембрана митохондрии напоминает емкость, которая ограждает их от гиалоплазмы. Внутреннюю мембрану от внешней отъединяет участок шириной 11-19 нм. Отличающей чертой внутренней мембраны считается ее способность выпячиваться внутрь митохондрии, принимая форму сплющенных гребней.


молекулы ДНК

Синтез АТФ на первой стадии проходит в гиалоплазме. На данной ступени идет начальное окисление субстратов или глюкозы до пировиноградной кислоты. Данные процедуры проходят без кислорода — анаэробное окисление. Следующая стадия образования энергии заключается в аэробном окислении и распада АТФ, данный процесс происходит в митохондриях клеток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector