Межпланетный полёт

Двигатель на антиматерии

Любители научной фантастики хорошо знают, что такое антиматерия. Но если вы забыли, антиматерия — это вещество, состоящее из частиц, которые имеют такую же массу, как и обычные частицы, но противоположный заряд. Двигатель на антиматерии — это гипотетический двигатель, в основе которого лежат взаимодействия между материей и антиматерией для генерации энергии, или создания тяги.

Гипотетический двигатель на антиматерии

Короче говоря, двигатель на антиматерии использует сталкивающиеся между собой частицы водорода и антиводорода. Испущенная в процессе аннигиляции энергия сравнима по объемам с энергией взрыва термоядерной бомбы в сопровождении потока субатомных частиц — пионов и мюонов. Эти частицы, которые движутся со скоростью одной третьей от скорости света, перенаправляются в магнитное сопло и вырабатывают тягу.

Преимущество такого класса ракет в том, что большую часть массы смеси материи/антиматерии можно преобразовать в энергию, что обеспечивает высокую плотность энергии и удельный импульс, превосходящий любую другую ракету. Более того, реакция аннигиляции может разогнать ракету до половины скорости света.

Такой класс ракет будет самым быстрым и самым энергоэффективным из возможных (или невозможных, но предлагаемых). Если обычные химические ракеты требуют тонны топлива, чтобы продвигать космический корабль к месту назначения, двигатель на антиматерии будет делать ту же работу за счет нескольких миллиграмов топлива. Взаимное уничтожение полукилограмма частиц водорода и антиводорода высвобождает больше энергии, чем 10-мегатонная водородная бомба.

Именно по этой причине Институт перспективных концепций NASA исследует эту технологию как возможную для будущих миссий на Марс. К сожалению, если рассматривать миссии к ближайшим звездным системам, сумма необходимого топлива растет в геометрической прогрессии, и расходы становятся астрономическими (и это не каламбур).

Как выглядит аннигиляция?

Согласно отчету, подготовленному к 39-й конференции AIAA/ASME/SAE/ASEE Joint Propulsion Conference и Exhibit, двухступенчатая ракета на антивеществе потребует больше 815 000 метрических тонн топлива, чтобы добраться до Проксимы Центавра за 40 лет. Это относительно быстро. Но цена…

Хотя один грамм антивещества производит невероятное количество энергии, производство одного только грамма потребует 25 миллионов миллиардов киловатт-часов энергии и выльется в триллион долларов. В настоящее время общее количество антивещества, которое было создано людьми, составляет меньше 20 нанограммов.

И даже если бы мы могли задешево производить антиматерию, нам потребовался бы массивный корабль, который смог бы удерживать необходимое количество топлива. Согласно докладу доктора Даррела Смита и Джонатана Вебби из Авиационного университета Эмбри-Риддл в штате Аризона, межзвездный корабль с двигателем на антивеществе мог бы набрать скорость в 0,5 световой и достичь Проксимы Центавра чуть больше чем за 8 лет. Тем не менее сам корабль весил бы 400 тонн и потребовал бы 170 тонн топлива из антивещества.

Возможный способ обойти это — создать судно, которое будет создавать антивещество с последующим его использованием в качестве топлива. Эта концепция, известная как Vacuum to Antimatter Rocket Interstellar Explorer System (VARIES), была предложена Ричардом Обаузи из Icarus Interstellar. Опираясь на идею переработки на месте, корабль VARIES должен использовать крупные лазеры (запитанные огромными солнечными батареями), создающие частицы антивещества при выстреле в пустой космос.

Подобно концепции с термоядерным ПВРД, это предложение решает проблему перевозки топлива за счет его добычи прямо из космоса. Но опять же, стоимость такого корабля будет чрезвычайно высокой, если строить его нашими современными методами. Мы просто не в силах создавать антивещество в огромных масштабах. А еще нужно решить проблему с радиацией, поскольку аннигиляция материи и антиматерии производит вспышки высокоэнергетических гамма-лучей.

Они не только представляют опасность для экипажа, но и для двигателя, чтобы те не развалились на субатомные частицы под воздействием всей этой радиации. Короче говоря, двигатель на антивеществе совершенно непрактичен с учетом наших современных технологий.

Примечания

  1. Interplanetary Flight: an introduction to astronautics.
  2. Crawford, I.A. (1998).
  3. Valentine, L (2002).
  4. Curtis, Howard (2005).
  5. Belbruno, E. (2004).
  6. Dunn, Marcia (October 29, 2015).
  7. Staff (October 29, 2015).
  8. Siniak IuE, Turusov VS; Grigorev, AI; et al. (2003).
  9. Sinyak, Y; Grigoriev, A; Gaydadimov, V; Gurieva, T; Levinskih, M; Pokrovskii, B (2003).
  10. Олег Макаров. Смеротоносным лучам вопреки // Популярная механика. — 2017. — № 9. — С. 50—54.
  11. Беспалов Валерий Иванович. Лекции по радиационной защите : учебное пособие :  . — 4 изд, расшир. — Томск : Издательство Томского политехнического университета, 2012. — 21.2 Особенности радиационной защиты в космосе. — С. 393. — 508 с. — 100 экз. — ISBN 978-5-4387-0116-3.

Ракеты на ядерном синтезе

Другая возможность использования ядерной энергии заключается в термоядерных реакциях для получения тяги. В рамках этой концепции, энергия должна создаваться во время воспламенения гранул смеси дейтерия и гелия-3 в реакционной камере инерционным удержанием с использованием электронных лучей (подобно тому, что делают в Национальном комплексе зажигания в Калифорнии). Такой термоядерный реактор взрывал бы 250 гранул в секунду, создавая высокоэнергетическую плазму, которая затем перенаправлялась бы в сопло, создавая тягу.

Проект «Дедал» так и не увидел свет

Подобно ракете, которая полагается на ядерный реактор, эта концепция обладает преимуществами с точки зрения эффективности топлива и удельного импульса. По оценке, скорость должна достигать 10 600 км/ч, что намного превышает пределы скорости обычных ракет. Более того, эта технология активно изучалась в течение последних нескольких десятилетий, и было сделано много предложений.

Например, между 1973 и 1978 годами Британское межпланетное общество провело исследование возможности проекта «Дедал». Опираясь на современные знания и технологии термоядерного синтеза, ученые призвали к строительству двухступенчатого беспилотного научного зонда, который смог бы добраться до звезды Барнарда (5,9 светового года от Земли) за срок человеческой жизни.

Первая ступень, крупнейшая из двух, работала бы в течение 2,05 года и разогнать аппарат до 7,1% скорости света. Затем эта ступень отбрасывается, зажигается вторая, и аппарат разгоняется до 12% скорости света за 1,8 года. Потом двигатель второй ступени отключается, и корабль летит в течение 46 лет.

Согласитесь, выглядит очень красиво!

По оценкам проекта «Дедал», миссии потребовалось бы 50 лет, чтобы достичь звезды Барнарда. Если к Проксиме Центавра, то же судно доберется за 36 лет. Но, конечно, проект включает массу нерешенных вопросов, в частности неразрешимых с использованием современных технологий — и большинство из них до сих пор не решены.

К примеру, на Земле практически нет гелия-3, а значит, его придется добывать в другом месте (вероятнее всего, на Луне). Во-вторых, реакция, которая движет аппарат, требует, чтобы испускаемая энергия значительно превышала энергию, затраченную на запуск реакции. И хотя эксперименты на Земле уже превзошли «точку безубыточности», мы еще далеки от тех объемов энергии, что смогут питать межзвездный аппарат.

В-третьих, остается вопрос стоимости такого судна. Даже по скромным стандартам беспилотного аппарата проекта «Дедал», полностью оборудованный аппарат будет весить 60 000 тонн. Чтобы вы понимали, вес брутто NASA SLS чуть выше 30 метрических тонн, и один только запуск обойдется в 5 миллиардов долларов (по оценкам 2013 года).

Короче говоря, ракету на ядерном синтезе будет не только слишком дорого строить, но и потребуется уровень термоядерного реактора, намного превышающий наши возможности. Icarus Interstellar, международная организация гражданских ученых (некоторые из которых работали в NASA или ЕКА), пытается оживить концепцию с проектом «Икар». Собранная в 2009 году группа надеется сделать движение на синтезе (и другое) возможным в обозримом будущем.

4. Улучшение технологий двигателей

Несколько технологий были предложены с целью экономии топлива и ускорения путешествий по сравнению с гомановскими перелетами. Большинство предложений всё ещё остаются теоретическими, однако в миссии Deep Space 1 был успешно опробован ионный двигатель. Эти усовершенствованные технологии делятся на:

  • Использование внешних ресурсов, например, солнечной энергии, или местных материальных ресурсов, чтобы избежать или минимизировать дорогостоящие задачи по транспортировке компонентов и топлива с поверхности Земли, при которых требуется преодолевать значительную земную силу притяжения см. раздел «использование космических ресурсов».
  • Космические двигательные установки с улучшенной топливной экономией. Такие системы позволили бы передвигаться быстрее, сохраняя при этом стоимость топлива в допустимых пределах.

Замороженный сон

Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз — это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.

К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35-40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.

Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело. При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур. В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.

Однако существует перспективный путь решения этой проблемы — клатратные гидраты. Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.

Анастасия Бархатова: «Улечу навсегда — это будет интересно»

Анастасия Бархатова закончила челябинский университет по специальности «микробиолог». Работает лаборантом на станции переливания крови, говорит, в её обязанности входит проверка крови на наличие ВИЧ и гепатита. О том, что можно стать участником проекта по переселению на Марс, случайно узнала из заметки на нидерландском сайте.

«Я тут же подала заявку, — рассказывает Настя. — Она должна быть на английском языке. Я его знаю и совершенствую, это официальный язык экспедиции, на следующих этапах будут предъявлены требования к уровню владения им. Ещё нужно было изложить свою мотивацию, чтоб организаторы понимали, что толкает меня на Марс».

Прибытие

Но вот зонд прибыл в систему альфы Центавра, сфотографировал окрестности системы и планеты (если они есть). Эту информацию нужно каким-то образом передать на Землю, причем мощность лазерного передатчика зонда ограничена единицами ватт. А через пять лет этот слабый сигнал нужно принять на Земле, выделив из фонового излучения звезды. По замыслу авторов проекта, у цели зонд маневрирует таким образом, что парус превращается в линзу Френеля, фокусирующую сигнал зонда в направлении Земли. Согласно оценкам, идеальная линза при идеальной фокусировке и идеальной ориентации усиливает сигнал мощностью 1 Вт до 1013 Вт в изотропном эквиваленте. Но как рассмотреть этот сигнал на фоне гораздо более мощного (на 13−14 порядков!) излучения звезды? «Свет от звезды на самом деле довольно слаб, поскольку ширина линии нашего лазера очень мала. Узкая линия — ключевой фактор в сокращении фона, — говорит Любин. — Идея сделать из паруса линзу Френеля на основе тонкопленочного дифракционного элемента достаточно сложна и требует большой предварительной работы, чтобы понять, как именно лучше сделать это. Этот пункт на самом деле — один из главных в нашем плане проекта».

С другой стороны, фазированная решетка оптических излучателей / приемников излучения общей апертурой в километр — это инструмент, способный видеть экзопланеты с расстояния десятков парсек. Используя приемники с перестраиваемой длиной волны, можно определить состав атмосферы экзопланет. Нужны ли вообще в таком случае зонды? «Конечно, использование фазируемой решетки как очень большого телескопа открывает новые возможности в астрономии. — Но, — добавляет Любин, — мы планируем добавить к зонду инфракрасный спектрометр в качестве более долговременной программы в дополнение к камере и другим датчикам. У нас отличная группа фотоники в Калифорнийском университете в Санта-Барбаре, которая является частью коллаборации».

Редакция благодарит газету «» и ее главного редактора Бориса Штерна за помощь в подготовке статьи.

Статья «Вперёд, к звездам!» опубликована в журнале «Популярная механика»
(№7, Июль 2016).

Варп-двигатель Алькубьерре

Любители научной фантастики, без сомнения, знакомы с концепцией варп-двигателя (или двигателя Алькубьерре). Предложенная мексиканским физиком Мигелем Алькубьерре в 1994 году, эта идея была попыткой вообразить мгновенное перемещение в пространстве без нарушения специальной теории относительности Эйнштейна. Если коротко, эта концепция включает растяжение ткани пространства-времени в волну, которая теоретически приведет к тому, что пространство перед объектом будет сжиматься, а позади — расширяться.

Объект внутри этой волны (наш корабль) сможет ехать на этой волне, будучи в «варп-пузыре», со скоростью намного превышающей релятивистскую. Поскольку корабль не движется в самом пузыре, а переносится им, законы относительности и пространства-времени нарушаться не будут. По сути, этот метод не включает движение быстрее скорости света в локальном смысле.

«Быстрее света» он только в том смысле, что корабль может достичь пункта назначения быстрее луча света, путешествующий за пределами варп-пузыря. Если предположить, что космический аппарат будет оснащен системой Алькубьерре, он доберется до Проксимы Центавра меньше чем за 4 года. Поэтому, если говорить о теоретическом межзвездном космическом путешествии, это, безусловно, наиболее перспективная технология в плане скорости.

Разумеется, вся эта концепция чрезвычайно спорная

Среди аргументов против, например, то, что она не принимает во внимание квантовую механику и может быть опровергнута теорией всего (вроде петлевой квантовой гравитации). Расчеты необходимого объема энергии также показали, что варп-двигатель будет непомерно прожорлив

Другие неопределенности включают безопасность такой системы, эффекты пространства-времени в пункте назначения и нарушения причинности.

Тем не менее в 2012 году ученый NASA Гарольд Уайт заявил, что вместе с коллегами начал исследовать возможность создания двигателя Алькубьерре. Уайт заявил, что они построили интерферометр, который будет улавливать пространственные искажения, произведенные расширением и сжатием пространства-времени метрики Алькубьерре.

В 2013 году Лаборатория реактивного движения опубликовала результаты испытаний варп-поля, которые проводились в условиях вакуума. К сожалению, результаты сочли «неубедительными». В долгосрочной перспективе мы можем выяснить, что метрика Алькубьерре нарушает один или несколько фундаментальных законов природы. И даже если его физика окажется верной, нет никаких гарантий, что систему Алькубьерре можно использовать для полетов.

В общем, все как обычно: вы родились слишком рано для путешествия к ближайшей звезде. Тем не менее, если человечество почувствует необходимость построить «межзвездный ковчег», который будет вмещать самоподдерживающееся человеческое общество, добраться до Проксимы Центавра удастся лет за сто. Если мы, конечно, захотим инвестировать в такое мероприятие.

Что касается времени, все доступные методы кажутся крайне ограниченными. И если потратить сотни тысяч лет на путешествие к ближайшей звезде может нас мало интересовать, когда наше собственное выживание стоит на кону, по мере развития космических технологий, методы будут оставаться чрезвычайно непрактичным. К моменту, когда наш ковчег доберется до ближайшей звезды, его технологии станут устаревшими, а самого человечества может уже не существовать.

Так что если мы не осуществим крупный прорыв в сфере синтеза, антиматерии или лазерных технологий, мы будем довольствоваться изучением нашей собственной Солнечной системы.

Причины межпланетных путешествий

Высокие затраты и риск межпланетных путешествий привлекают широкое внимание населения. Множество миссий столкнулось различными неисправностями или полным выходом из строя беспилотных зондов, например Марс 96, Deep Space 2 и Бигль-2

(В статье Список межпланетных космических аппаратов приводится полный список успешных и неудачных проектов).

Многие астрономы, геологи и биологи считают, что изучение Солнечной системы даёт знание, которое не может быть получено лишь при помощи наблюдений с поверхности Земли или с земной орбиты. Существуют различные точки зрения относительно того, принесут ли пилотируемые миссии полезный научный вклад; некоторые учёные считают, что автоматические зонды дешевле и безопаснее, в то время как другие утверждают, что космонавты при помощи советов от земных учёных, смогут реагировать более гибко и разумно на новые или неожиданные особенности изучаемых регионов.

Те, кто оплачивает расходы на подобные миссии (прежде всего в государственном секторе), вероятнее всего будут заинтересованы в выгоде для себя или для человечества в целом. Пока только преимуществами такого подхода стали различные «побочные» технологии, изначально разработанные для космических полётов, но затем пригодившиеся в других видах деятельности.

Другие практические мотивы для межпланетных путешествий являются более спекулятивными, поскольку современные технологии ещё не достаточно развиты для поддержки тестовых проектов. Писателям, работающим в жанре научной фантастики, иногда удаётся прогнозировать будущие технологии — например, были предсказаны геостационарные спутники связи (Артур Кларк) и некоторые аспекты компьютерных технологий (Мак Рейнольдс).

Множество научно-фантастических рассказов (в частности, истории Бена Бова серии «Гранд Тур») подробно описывают, как люди могли бы добывать полезные минералы из астероидов или получать энергию различными путями, включая использование солнечных батарей на орбите (где им не мешают облака и атмосфера). Некоторые считают, что лишь такие технологии могут стать единственным способом обеспечения роста уровня жизни без излишнего загрязнения или истощения ресурсов Земли (например, снижение уровня добычи ископаемых энергоносителей — так называемый пик нефти — был предсказан за десятилетия до его начала).

Наконец, колонизация человечеством других частей Солнечной системы позволит предотвратить вымирание человечества в ходе того или иного потенциального катастрофического для Земли события, множество из которых являют неотвратимыми (см. статью Способы гибели человечества). Среди возможных событий — столкновения с крупным астероидом, один из которых, вероятно, ранее способствовал Мел-Палеогеновому вымиранию. Хотя и прорабатываются различные системы мониторинга астероидных угроз и планетарной защиты, текущие методы обнаружения и борьбы с астероидами остаются чрезвычайно дорогими, сырыми, непроработанными и малоэффективными. Например, углистые хондриты имеют очень низкое альбедо, что сильно осложняет их обнаружение. Хотя углистые хондриты считаются редкими, некоторые из них очень велики и подозреваются в участии в массовых вымираниях крупных видов. Так, крупнейший по своим последствиям Чиксулуб, возможно, был углистым хондритом.

Некоторые учёные, в том числе члены Space Studies Institute (Принстонский университет), утверждают, что в долгосрочном плане подавляющее большинство людей в конечном счёте будут жить в космосе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector