Первая в истории фотография квантовой запутанности

Теорема Белла

Человеку, существующему всю свою историю в масштабах макромира, сложно понять законы квантовой механики, которые часто противоречат наблюдениям в макромире. Так зародилась теория скрытых параметров, согласно которой, упомянутое ранее дальнодействие между частицами, может быть вызвано наличием неких изначально скрытых параметров частиц. Проще говоря – измерение одной частицы не приводит к изменению состояния другой, и оба эти состояния возникли вместе с этими частицами, в момент распада исходной частицы. Такое интуитивно понятное объяснение удовлетворило бы человеческий ум.

В 1964-м году Джон Стюарт Белл сформулировал свои неравенства, позже называемые теоремой, которые позволяют провести эксперимент, позволяющий точно определить – имеют ли место некие скрытые параметры. То есть если частицы имели скрытые параметры до своего разделения, то выполнилось бы одно неравенство, а если их состояния связаны и неопределенны до измерения одной из частиц – другое неравенство Белла.

В 1972-м году подобный эксперимент был проведен Фридманом и Клаузером, и результаты указывали на существования неопределенности состояний до измерения. Впрочем, данное явление воспринималось научным сообществом как некий конфуз, который рано или поздно будет разрешен. Однако в 1981-м году был нанесен второй удар по физической теории – эксперимент Аллена Аспе. Этот весьма популярный эксперимент стал последним аргументом в пользу существования квантовой запутанности и так называемого «жуткого дальнодействия». И хотя окончательно поставить точку в этом вопросе не получилось, результаты были настолько убедительны, что ученым пришлось принять такую особенность квантового мира.

Космический компьютер

Одно дело сказать, что вселенная конструирует пространство-время посредством запутанности; совсем другое — показать, как вселенная это делает. Этой сложной задачей занялись Прескилл и коллеги, которые решили рассмотреть космос как колоссальный квантовый компьютер. Почти двадцать лет ученые работали над строительством квантовых компьютеров, которые используют информацию, зашифрованную в запутанных элементах, вроде фотонов или крошечных микросхем, чтобы решать проблемы, с которыми традиционные компьютеры справиться не могут. Команда Прескилла использует знание, полученное в результате этих попыток, чтобы предсказать, как отдельные детали внутри банки с супом могли бы отразиться на заполненной запутанностью этикетке.

Квантовые компьютеры работают, эксплуатируя компоненты, которые находятся в суперпозиции состояний, как носители данных — они могут быть нулями и единицами одновременно. Но состояние суперпозиции очень хрупкое. Избыток тепла, например, может разрушить состояние и всю заключенную в нем квантовую информацию. Эти потери информации, которые Прескилл сравнивает с рваными страницами в книге, кажутся неизбежными.

Но физики ответили на это, создав протокол квантовой коррекции ошибок. Вместо того чтобы полагаться на одну частицу для хранения квантового бита, ученые разделяют данные между несколькими запутанными частицами. Книга, написанная на языке квантовой коррекции ошибок, будет полна бреда, говорит Прескилл, но все ее содержимое можно будет восстановить, даже если половина страниц пропадет без вести.

Квантовая коррекция ошибок привлекла много внимания в последние годы, но теперь Прескилл и его коллеги подозревают, что природа придумала эту систему уже давно. В июне, в журнале Journal of High Energy Physics, Прескилл и его команда показали, как запутывание множества частиц на голографической границе идеально описывает одну частицу, притягиваемую гравитацией внутри куска анти-де-ситтеровского пространства. Малдасена говорит, что эта находка может привести к лучшему пониманию того, как голограмма кодирует все детали пространства-времени, которое окружает.

Физики признают, что их размышления должны пройти долгий путь, чтобы соответствовать реальности. В то время как анти-де-ситтеровское пространство предлагает физикам преимущество работы с хорошо определенной границей, у Вселенной нет такой четкой этикетки на банке с супом. Ткань пространства-времени космоса расширяется с момента Большого Взрыва и продолжает делать это в нарастающем темпе. Если вы отправите луч света в космос, он не развернется и не вернется; он будет лететь. «Непонятно, как определить голографическую теорию нашей Вселенной, — писал Малдасена в 2005 году. — Просто нет удобного места для размещения голограммы».

Тем не менее, как бы странно ни звучали все эти голограммы, банки с супом и червоточины, они могут стать перспективными дорожками, которые приведут к слиянию квантовых жутких действий с геометрией пространства-времени. В своей работе над червоточинами Эйнштейн и Розен обсудили возможные квантовые последствия, но не провели соединения со своими ранними работами по запутанности. Сегодня эта связь может помочь объединить квантовую механику ОТО в теорию квантовой гравитации. Вооружившись такой теорией, физики могли бы разобрать загадки состояния юной Вселенной, когда материя и энергия умещались в бесконечно малой точке пространства. опубликовано econet.ru

Присоединяйтесь к нам в  , , Одноклассниках

Квантовая запутанность на английском. Еще значения слова и перевод КВАНТОВАЯ ЗАПУТАННОСТЬ с английского на русский язык в англо-русских словарях.

  • ЗАПУТАННОСТЬ — f. complexity, intricacy Russian-English Dictionary of the Mathematical Sciences
  • ЗАПУТАННОСТЬ — Intricacy Русско-Американский Английский словарь
  • ЗАПУТАННОСТЬ — Entanglement Русско-Американский Английский словарь
  • ЗАПУТАННОСТЬ — confusion Англо-Русско-Английский словарь общей лексики — Сборник из лучших словарей
  • ЗАПУТАННОСТЬ — confusion; ~ый tangled; перен. intricate, involved; ~ый вопрос knotty question; оказаться ~ым в чем-л. become* involved in smth complexity, complication, … Русско-Английский словарь общей тематики
  • ЗАПУТАННОСТЬ — ж. confusion Русско-Английский словарь
  • ЗАПУТАННОСТЬ — ж. confusion Russian-English Smirnitsky abbreviations dictionary
  • ЗАПУТАННОСТЬ — Tangle Британский Русско-Английский словарь
  • ЗАПУТАННОСТЬ — Imbroglio Британский Русско-Английский словарь
  • ЗАПУТАННОСТЬ — Entanglement Британский Русско-Английский словарь
  • ЗАПУТАННОСТЬ — Complication Британский Русско-Английский словарь
  • ЗАПУТАННОСТЬ — confusion; ~ый tangled; перен. intricate, involved; ~ый вопрос knotty question; оказаться ~ым в чем-л. become* involved in smth Русско-Английский словарь — QD
  • КВАНТОВАЯ — фундаментальная физическая теория динамического поведения всех элементарных форм вещества и излучения, а также их взаимодействий. Квантовая механика представляет собой теоретическую … Русский словарь Colier
  • ЗАПУТАННОСТЬ — жен. complexity, complication, inextricably, intricacy, plexus запутанн|ость — ж. confusion ~ый tangled перен. intricate, involved ~ый вопрос knotty question оказаться … Большой Русско-Английский словарь
  • ЗАПУТАННОСТЬ — запутанность embroilment Русско-Английский словарь Сократ
  • КВАНТОВЫЙ — adj. quantum; квантовая теория, quantum theory; квантовая механика, quantum mechanics Russian-English Dictionary of the Mathematical Sciences
  • WAVE — 1. сущ. 1) вал, волна the waves поэт. ≈ море the sound of the waves breaking on the shore ≈ … Большой Англо-Русский словарь
  • QW — сокр.

Частотно-зависимое сжатие

Частотно-зависимое сжатие: на разных частотах сжимается амплитуда, фаза или их комбинация. В результате чувствительность улучшена на всех частотах. Пример из статьи: сверху показана зависимость улучшения чувствительности интерферометра при использовании обычного сжатия как функция частоты и разной фазы измерения — сигнал находится в фазовой квадратуре, и видно, что если на высоких частотах чувствительность возрастает (голубой цвет), то на низких — падает (красный). Если использовать частотно-зависимое сжатие, можно улучшить чувствительность на всех частотах.

$$display$$E_{ф}^{sqz} = E_0 e^{-2r} \sin (\phi) \rightarrow E_0 e^{-2r} \sin (\phi + \pi/2) = E_{a}e^{-2r}$$display$$

$inline$\pi/2$inline$другой

Что такое квантовая запутанность простыми словами. Что мы знаем о квантах и их причудах?

На сегодня квантовая физика ушла достаточно далеко. Открыто много различных явлений. Но что мы знаем на самом деле? Ответ представлен одним учёным современности. «В квантовую физику можно либо верить, либо ее не понимать», — таково определение Ричарда Фейнмана. Подумайте над этим сами. Достаточно будет упомянуть такое явление, как квантовая запутанность частиц. Это явление ввергло научный мир в положение полного недоумения. Ещё большим шоком стало то, что возникший парадокс несовместим с законами Ньютона и Эйнштейна.

Впервые эффект квантовой запутанности фотонов обсуждался в 1927 году на пятом Солвеевском Конгрессе. Между Нильсом Бором и Эйнштейном возник жаркий спор. Парадокс квантовой спутанности полностью изменил понимание сути материального мира.

Известно, что все тела состоят из элементарных частиц. Соответственно, все явления квантовой механики отражаются в обычном мире. Нильс Бор говорил, что если мы не смотрим на Луну, то её не существует. Эйнштейн считал это неразумным и полагал, что объект существует независимо от наблюдателя.

При изучении проблем квантовой механики следует понимать, что её механизмы и законы взаимосвязаны между собой и не подчиняются классической физике. Попробуем разобраться в самой противоречивой области – квантовой запутанности частиц.

Для чего нужны Пространство и Время?

Исходя из теории декогеренции, Пространство и Время возникают из квантовой реальности.

Представь себе: в квантовой реальности, вне времени и пространства, пребывает бесконечный набор возможностей. Этот набор нигде не реализован, он просто есть.

И вот, появляется информация, которая материализует, извлекает одну из альтернатив из Абсолюта. Таким образом, Возможность превращается в Событие. При этом, в квантовой реальности по-прежнему сохраняются все возможные альтернативы.

Квантовая реальность, Абсолют – это мир чистого информационного Потенциала.

Между тем, для физического проявления События необходимо какое-то место. Так возникает Пространство – как место превращения возможности в Событие под воздействием информации.

Электрон прошел через левую щель в двухщелевом эксперименте. Огромный метеорит упал на Землю. Цезарь перешел Рубикон. Твои родители встретились. Все это – События, реализованные возможности.

Поэтому, о декогеренции можно сказать и так – это превращение существующей в квантовом пространстве возможности в Событие под воздействием поступающей информации.

А информационный обмен, между тем, продолжается. И совершившееся Событие рождает и сообщает новую информацию. А эта вновь полученная информация начинает извлекать из квантовой реальности новую возможность, превращая ее в следующее Событие.

Электрон прошел через щель – и оставил след на левой части экрана за щелью. Метеорит упал – и началось всемирное похолодание. Цезарь перешел Рубикон – и в Риме началась гражданская война. Твои родители встретились – и полюбили друг друга.

Так рождается Время – как процесс необратимого и взаимосвязанного превращения возможностей в События.

Без Времени не будет ни причин, ни следствий!

  • Цель существования Пространства – создание места для превращения самых разных возможностей в События.
  • Цель существования Времени – создание цепочек причинно-следственных связей для связывания Событий между собой.

Именно поэтому время на самом деле субъективно. Главное, от чего оно зависит -это интенсивность информационного обмена. Плотность Событий. Поэтому бывает, что «и дольше века длится день». А бывает «день пустой и мимолетный»…

Для увеличения схемы нажмите на нее.

Вместе Пространство и Время образуют единый континуум – Пространство Взаимосвязанных Событий.

В этом Пространстве Взаимосвязанных Событий возникает своя собственная, неповторимая и уникальная последовательность причинно-следственных связей. Тот самый невообразимо сложный и прекрасный Узор Мироздания. И ты вплетаешь в него свою нить. Ты постоянно создаешь информационное воздействие на Абсолютную реальность.

Теория декогеренции дает ответ на вопрос — как информация рождает материальный мир и как формируется Пространство-Время?

Однако, остается даже более важный вопрос – зачем? Для чего нужно Пространство Взаимосвязанных Событий? Каков замысел Узора Мироздания? И смысл твоего существования?

То, о чем рассказано в этой статье, на первый взгляд может показаться очень далеким от повседневной практики. Однако, этот рассказ имеет прямое отношение к твоей жизни и к созданию твоей реальности.

Если ты глубоко прочувствуешь, что информация формирует реальность, если это станет частью твоей Мудрости — твоя жизнь необратимо изменится и станет гораздо более осознанной!

Пожалуйста, оцени статью, нажав на звездочки в конце статьи.

Чувствительность LIGO и квантовые шумы

прошлой публикации про Einstein TelescopeОсновные вклады в чувствительность LIGO на разных частотах, нормированные на амплитуду ГВ (strain).Дробовой шумШум радиационного давленияПояснение про квантовые шумы. Случайное распределение числа фотонов производят случайную силу радиационного давления (слева). С другой стороны, случайное распределение фотонов во времени приводит к флуктуациям амплитуды на фотодетекторе (справа). Оба шума зависят от длины волны, мощности света и длины плеча. Шум радиационного давления тем меньше, чем больше масса зеркал. Credit: . Зависимость чувствительности от мощности света: дробовой шум (синий) уменьшается, а шум радиационного давления (зеленый) — пропорционально возрастает.

Проблемы квантовых компьютеров

Несмотря на недавнее заявление Google о достижении квантового превосходства с помощью их экспериментального процессора Sycamore, пока не существует эффективных вычислительных устройств, принцип работы которых был бы основан на квантовом взаимодействии частиц.

Это сразу же подтвердили главные конкуренты Google по квантовым компьютерам — компания IBM, представители которой заявили, что их «обычный» суперкомпьютер Summit легко выполнит вычисления, которыми хвастались в Google со своим Sycamore.

Да, кубиты в квантовых компьютерах действительно могут находиться в двух состояниях одновременно и обрабатывать гораздо больше информации. Но из-за нестабильности сверхпроводящих материалов, которые могут переходить в квантовое состояние лишь на некоторое время, все вычисления действующих квантовых компьютеров носят лишь технических характер и не представляют особой ценности для науки.

Кстати, решение этой проблемы недавно предлагали ученые из того же австрийского Института науки и техники: несколько месяцев назад физики разработали прототип устройства для объединения информации о вычислениях квантовых компьютеров с обычными.

Их устройство — механический генератор для создания запутанного излучения между квантовыми компьютерами — опять-таки касается явления квантовой запутанности и предусматривает, что в таком состоянии могут быть не только элементарные частицы, но и излучения этих частиц.

Фото: IST Austria / Philip Krantz, Krantz NanoArt

«Представьте себе коробку с двумя отверстиями. Если отверстия запутаны, можно охарактеризовать излучение, выходящее из одного отверстия, глядя на другое», — писали авторы работы. В своем эксперименте физики из Австрии впервые использовали механический объект: с помощью кремниевого источника излучения, длиной в 30 микрометров, ученые подтвердили существование запутанного излучения, что теоретически может означать обмен информацией на расстоянии.

Такая технология может позволить объединить излучение микроволновых импульсов в квантовых компьютерах с микроволновыми импульсами уже укрощенного нами оптического волокна. Это означает, что междухолодными» сверхпроводниками в квантовых компьютерах и устройствами, которые передают информацию при комнатной температуре можно установить соединение, и считывать данные о квантовых вычислениях.

В это же время физики из Иллинойского и Гамбургского университетов и вовсе предложили использовать в качестве кубитов фермионы Майораны — квазичастицы, которые одновременно являются своими античастицами. В состоянии запутанности эти частицы якобы очень стабильны и их можно использовать для хранения информации.

Ученые из Германии и США впервые засекли фермионы Майораны в эксперименте со сверхпроводником из рения, — этот материал не имеет электрического сопротивления при температурах около шести градусов по Кельвину(-267 °C). Авторы исследования заявили, что следующим шагом для создания квантовых компьютеров должно быть инженерное решение для управления кубитами Майораны и увеличения с их помощью компьютерных мощностей.

Очевидно, что исследования квантовых состояний сверхпроводников пока находятся на начальном этапе, но именно такие эксперименты сулят огромные перспективы для развития альтернативной физики и революционных открытий в разных сферах жизни человека.

Эйнштейн, Нильс Бор и квантовая механика

В 1927-м году в Брюсселе состоялся Пятый Сольвеевский конгресс — международная конференция на тему актуальных проблем в области физики и химии. Одна из состоявшихся дискуссий была на тему так называемой Копенгагенской интерпретации квантовой механики.

Нильс Бор и Альберт Эйнштейн

Данная теория была разработана Нильсом Бором и Вернером Гейзенбергом и  утверждает о вероятностной природе волновой функции. Несмотря на решение некоторых тогдашних проблем физики, например, связанных с корпускулярно-волновым дуализмом, данная теория также вызывала и ряд вопросов. В первую очередь, само представление объекта с известным импульсом, не имеющего определенной координаты, а лишь вероятность обнаружения в данной точке, — противоречит нашему опыту жизни в макромире. Кроме того, эта теория подразумевала неопределенность в расположении частицы, до тех пор, пока не будет произведено измерение.

Совместное фото участников Пятого Сольвеевского конгресса

Альберт Эйнштейн не мог принять такую интерпретацию, в результате чего и зародилась его известная фраза «Бог не играет в кости», на что Нильс Бор ответил «Альберт, не указывай Богу, что ему делать». Так начался длительный спор Эйнштейна и Бора.

Ответ Эйнштейна последовал в 1935-м году, когда он, вместе с Борисом Подольским и Натаном Розеном опубликовал работу, носившую название «Можно ли считать квантово-механическое описание физической реальности полным?». В данной статье был представлен мысленный эксперимент под названием «парадокс Эйнштейна — Подольского — Розена» (ЭПР-парадокс).

Зачем это нужно?

Результаты исследований шотландских ученых могут подтолкнуть развитие технологий для наблюдений за квантовыми явлениями. Возможность наблюдения за этими процессами приблизит исследователей к их полному понимаю и возможности их практического использования.

Концепции квантовой запутанности уже используются, например, при разработке квантовых компьютеров, которые обещают производить вычисления, далеко выходящие за рамки возможностей современных суперкомпьютеров. Кроме того, полное понимание процессов квантовой запутанности позволит применять их при разработке технологий квантового шифрования, которые в свою очередь позволят существенно повысить уровень защиты передаваемых данных.

Если вам интересны новости науки и технологий, подпишитесь на наш канал в . Там вы найдете материалы, которые не были опубликованы на сайте.

Об эксперименте в Делфтском техническом университете

Эксперимент, результаты которого были опубликованы в 2015-м году, происходил следующим образом. В эксперименте использовались алмазные листы с решеткой полостей, которые заполняются азотом.  Такая технология была разработана исследователями Калифорнийского университета в Санта-Барбаре и Национальной лаборатории Лоуренса в Беркли в 2010-м году. Два таких кристалла алмаза расположили на расстоянии 1.3 км друг от друга. В результате облучения обоих пластин микроволновым излучением и лазерами электроны этих «алмазных ловушек» переходили в возбужденное состояние и испускали пару фотонов, которые взаимодействовали друг с другом. Как следствие этого взаимодействия – возникала квантовая запутанность между электронами, которые излучали эти фотоны.

Точки расположения алмазных листов на территории кампуса Делфтского технического университета

Для обнаружения данного явления ученые проводили измерение спинов электронов с разных пластин практически одновременно, что не допустило бы обмен информацией между ними со скоростью света. Однако, как оказалось, спины двух электронов были синхронизированы, что говорит о передачи информации неким образом, который позволяет превысить скорость света. Конечно, сама процедура определения характеристик электронов намного сложнее, и потребовалось провести немало расчетов и сравнить их волновые функции. Несмотря на все сложности эксперимента, он проводился 245 раз в течение 18-ти дней, и был запланирован таким образом, чтобы избежать всех возможных ошибок, как со стороны измерительных приборов, так и со стороны окружающей среды.

Бас Хенсен и Рональд Хэнсон устанавливают оборудование для эксперимента по проверке неравенств Белла

Окончательно закроет эту тему будущий крупный эксперимент в Массачусетском технологическом институте в течение ближайших трех лет. Исследовательская группа планирует собирать электромагнитное излучение пульсаров, а также свет, приходящий из дальних галактик. Подобный эксперимент позволит избежать какой-либо связи измерительных приборов и источников сигнала, тем самым устраняя последнюю возможность наличия скрытых параметров.

Схематическое изображение пульсара

Новые возможности человека

  1. Теоретически человек силой мысли может поменять что-нибудь в любом предмете на любом расстоянии. Например, изменить свойство электрона,   произвести его декогеренцию, в результате чего он пройдет только через одну щель. Произвести телепортацию, что-нибудь поменять в предмете, сдвинуть его с места не прикасаясь и так далее. И это уже не фантастика.

    Ведь с помощью сознания через тонкие уровни можно соединиться с удаленным предметом, квантово запутаться с ним, то есть быть с ним единым. Произвести декогеренцию, рекогеренцию, а значит материализовать любую часть предмета или наоборот растворить ее в квантовом источнике. Но все это в теории. Чтобы осуществить это, на самом деле нужно обладать очень сильным, развитым сознанием и высоким уровнем энергии.

    Вряд ли обычный человек на это способен, поэтому такой вариант нам не подойдет. Хотя теперь можно физически объяснить многие паранормальные вещи, необычные способности экстрасенсов, мистиков, йогов. И многие люди способны на некоторые вышеописанные чудеса.  Все это объясняется в рамках современной квантовой физики. Смешно  когда в телепередаче «Битва экстрасенсов» на стороне скептиков находится ученый, который не верит в способности экстрасенсов. Он просто отстал в своем профессионализме.

С помощью сознания можно соединиться с любым предметом и считывать информацию с него. Например, предметы дома хранят информацию о своих обитателях. Многие экстрасенсы на это способны, но это также не подойдет обычным людям. Хотя…

Ведь возможно предвидеть будущую катастрофу, не идти туда, где будет беда и так далее. Ведь теперь мы знаем, что на более тонких уровнях нет времени, а значит можно заглянуть в будущее. Даже обычный человек часто способен на такое. Это называется интуицией. Развить ее вполне возможно, об этом мы поговорим позже. Не обязательно быть супер провидцем, достаточно лишь уметь слушать свое сердце.

Можно притягивать к себе лучшие события в жизни. Другими словами выбирать из суперпозиции те варианты развития событий, которые мы захотим. Это под силу уже обычному человеку. Существует множество школ, где этому обучают. Да многие интуитивно и так это знают, стараются применять в жизни.

Теперь становится понятно, как мы можем лечить себя сами, быть идеально здоровыми. Во-первых, с помощью силы мысли создавать правильную информационную матрицу на выздоровление. А тело уже само, согласно этой матрице будет производить из нее здоровые клетки, здоровые органы, то есть выполнять декогеренцию из этой матрицы. То есть постоянно думая, что мы здоровы, мы будем здоровыми. А если мы носимся со своими болезнями, думая о них, они нас так и будут преследовать. Об этом многие знали, но теперь все эти вещи можно объяснить с научной точки зрения. Квантовая физика все объясняет.

А во-вторых, направлять внимание на больной орган, либо работать с мышечным зажимом, энергетическим блоком с помощью расслабления. То есть своим сознанием мы можем связываться с любой частью тела напрямую через тонкие каналы связи, квантово запутываться с ними, что намного быстрее, чем это осуществляется через нервную систему

На этом свойстве также разработано много техник оздоровления организма, расслабления в йоге и других системах.

Управлять с помощью сознания своим энергетическим телом. Это можно применить как для оздоровления, как это применяется в цигун, так и для других более продвинутых целей.

Я перечислил лишь малую часть тех возможностей, которые открывает перед человеком новая физика. Чтобы перечислить все, нужно писать целую книгу и даже не одну. На самом деле все это было давно известно, с успехом применялось во многих школах, системах оздоровления и саморазвития. Просто теперь все это можно объяснить научно, без всякой эзотерики и мистики.

Квантовая запутанность квантовый компьютер. Теорема Белла. Спор разрешён?

Джон Клаузер, будучи ещё аспирантом Колумбийского университета, в 1967 отыскал забытую работу ирландского физика Джона Белла. Это была сенсация: оказывается Беллу удалось вывести из тупика спор Бора и Энштейна . Он предложил экспериментально проверить обе гипотезы. Для этого он предложил построить машину, которая бы создавала и сравнивала много пар запутанных частиц. Джон Клаузер принялся разрабатывать такую машину. Его машина могла создавать тысячи пар запутанных частиц и сравнивать их по разным параметрам. Результаты экспериментов доказывали правоту Бора.

А вскоре французский физик Ален Аспе провёл опыты, один из которых касался самой сути спора между Энштейном и Бором. В этом опыте измерение одной частицы могло прямо повлиять на  другую только в случае, если сигнал от 1-й ко 2-й прошёл бы со скоростью, превышающей скорость света. Но сам Энштейн доказал, что это невозможно. Оставалось только одно объяснение – необъяснимая, сверхъестественная связь между частицами.

Результаты опытов доказали, что теоретическое предположение квантовой механики – верно. Квантовая запутанность – это реальность ( ). Квантовые частицы могут быть связанными несмотря на огромные расстояния. Измерение состояния одной частицы влияет на состояние далеко расположенной от нёё 2-й частицы так, как если бы расстояния между ними не существовало. Сверхъестественная связь на расстоянии происходит в действительности.

Что такое квантовая запутанность и почему она важна?

Как ранее писало НВ, квантовая запутанность — это явление в теоретической физике, при котором квантовые состояния элементарных частиц оказываются связанными и взаимозаменяемыми на абсолютно любых расстояниях. Речь идет о расстояниях, которые выходят за пределы любых форм взаимодействия в классической физике.

Иными словами, частицы, которые находятся в состоянии квантовой запутанности, формируют единое целое и влияют друг на друга вне зависимости от расстояния между ними. При этом, измерение состояния одной из них оказывает влияние на другую частицу.

Альберт Эйнштейн называл квантовую запутанностьжутким взаимодействием на расстоянии». И не зря, ведь это квантовое явление противоречит его общей теории относительности.

К примеру, если взять два упомянутых выше электрона странного металла, которые будут находиться в состоянии квантовой запутанности, и разнести их в пространстве-времени на разные уголки Вселенной, — при измерении состояния первого электрона, состояние второго определится моментально и получит противоположное значение.

Это означает, что частицы в квантовом состоянии могут взаимодействовать друг с другом на скоростях, гораздо высших скорости света, что, согласно Эйнштейну, в принципе невозможно в условиях нашей Вселенной.

Среди прочего, квантовая запутанность является основой для многомировой интерпретации и многочисленных теорий о существовании параллельных Вселенных. В мае прошлого года физик-теоретик из США Брайан Свингл предложил теорию, согласно которой квантовые пары и их запутанности буквально формируют пространство-время во всей Вселенной, и все, что нас окружает — это своего рода голограмма квантового мира, в которой присутствует время.

Фото: Mark Garlick/Science Photo Library

В своей модели Свингл объединил законы пространства-времени Эйнштейна и некоторые свойства квантовой механики в антидеситтеровском пространстве — максимально симметричном пространстве с нулевой кривизной.

По его расчетам, четырехмерная структура пространства-времени(длина, ширина, глубина и время) может быть закодирована в трехмерном квантовом мире(с теми же измерениями, только без времени), а запутанные квантовые частицы, в таком случае, не только находятся вне пространства-времени, но и формируют его.

Кроме таких экзотических исследований, квантовая запутанность может нести и более практичный результат. В частности, полгода назад физики из Университета Глазго, подобно своим коллегам из Австрии и США, заявили об экспериментальном обнаружении квантовой запутанности двух фотонов, более известном как состояние Белла.

Ученые разработали специальную камеру, которая реагирует на потоки запутанных фотонов из квантового источника света. Фотоны были изображены на жидкокристаллической поверхности, с помощью которой можно управлять их состояниями.

Подобные исследования приближают нас к квантовому программированию и разработке полноценного квантового компьютера, в котором минимальная единица информации — кубит — может находится в двух состояниях одновременно.

В перспективе это может привести к серьезному увеличению вычислительных мощностей и настоящей революции в программировании. Однако, действующие квантовые компьютеры очень нестабильны из-за того, что квантовое состояние кубитов сложно поддерживать длительное время, не говоря уже о передаче информации через сверхпроводники, которые охлаждены до очень низких температур.

Фото: quantamagazine.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector