Ces 2020, ibm и первое настоящее коммерческое применение нового квантового компьютера

1.Введение

Уже в начале следующего года в свободной
продаже должен появиться новый вид
памяти NRAM (nonvolatile random-access memory). Это будет
первое компьютерное устройство, созданное
с использованием нано-технологий
(отдельные части памяти будут размером
всего в несколько миллиардных долей
метра, то есть в несколько атомов).
Эксперты предрекают, что NRAM произведет
революцию в области устройств хранения
информации и полностью заменит
существующие виды памяти уже к 2006-2007
году. Характеристики новой памяти
кажутся просто фантастическими:
использование нано-технологий позволяет
увеличить плотность записи информации
почти в 100 раз и скорость обмена информаций
— почти во столько же. В результате
минимальная емкость новой памяти будет
составлять 10 Гбайт. А уже к середине
следующего года производители обещают
выйти на 50-гигобайтный уровень, что
сопоставимо с емкостью жестких дисков
современных винчестеров. Используемая
сейчас память DDR хотя и появилась всего
около года назад, но конкурировать с
нано-технологией она не в состоянии:
максимальный объем такой памяти ограничен
сейчас 2 Гбайтами, а 10 Гбайт, с которых
начинается NRAM, считается технологическим
пределом DDR. Такие характеристики
позволят нано-разработкам очень быстро
вытеснить все существующие виды памяти,
предрекают эксперты.

Но одной памятью применение нано-технологий
не ограничивается. Нано-устройства
постепенно выходят из лабораторий. Если
в прошлом году объем рынка нано-технологий
составил всего 2,5 млрд. евро, то уже в
2010 году, по прогнозам специалистов, он
достигнет 100 млрд. евро, а к 2015 году —
превысит 1 трлн. евро. И это не предел, а
вполне возможно, весьма заниженные
оценки. Ведь нано-технологии могут
применяться во всех отраслях: от
авиастроения до производства одежды и
лекарств. Их использование перевернет
представление о возможностях современной
промышленности. Материалы, созданные
в наномире по прочности будут в сотни
раз превосходить сталь и при этом весить
— в шесть раз меньше. Прототипы подобных
материалов уже существуют, но пока их
производство слишком дорого. Однако
кое-что уже входит в повседневную жизнь:
в Японии уже запущена в промышленное
производство гибкая солнечная батарея,
толщиной в несколько атомов, ею планируется
покрывать всю поверхность автомобилей,
использовать при производстве одежды
и сотовых телефонов. Эти устройства
станут полностью энергонезависимыми,
получая электричество за счет
преобразования солнечной энергии.

В конце мая в Европейском союзе была
принята Стратегия развития нано-технологий
в ЕС до 2013 г. На развитие этой отрасли
из единого европейского бюджета будет
выделено 1,3 млрд. евро. А к 2010 году бюджет
перспективных разработок в наномире
планируется увеличить до 5 млрд.

Перспективы применения наноехнологий
просто поражают. Особенно фантастическими
кажутся разработки в сфере IT. Уже сейчас
ученые предлагают детальное описание
нано-компьютера. Правда, существует он
пока только на бумаге. Но расчеты
показали, что в скором времени станет
возможным создание ЭВМ размером всего
400х400х400 нанометров. Для сравнения:
эретроцит (красная кровяная клетка)
будет больше этого компьютера в 10-15 раз.
Причем мощность такой машины будет
вполне сопоставима с современными
компьютерами (чуть более 1 ГГц). Она будет
выполнять 1016 операций в секунду, примерно
столько же, сколько сейчас делает
процессор Pentium II. До создания подобного
устройства, по оценкам экспертов,
осталось не более 5 лет. Представить же
что будет дальше и вовсе невозможно. И
только Россия, по-видимому, будет
попрежнему добывать нефть. Вот только
будет ли кому ее продавать?

История развития компьютерной техники

Потребность в хранении, преобразовании и передачи информации у человека появилась значительно раньше, чем был создан телеграфный аппарат, первая телефонная станция и электронная вычислительная машина (ЭВМ). Фактически весь опыт, все знания, накопленные человечеством, так или иначе, способствовали появлению вычислительной техники. История создания ЭВМ — общее название электронных машин для выполнения вычислений — начинается далеко в прошлом и связана с развитием практически всех сторон жизни и деятельности человека. Сколько существует человеческая цивилизация, столько времени используется определенная автоматизация вычислений.

История развития компьютерной техники насчитывает около пяти десятилетий. За это время сменилось несколько поколений ЭВМ. Каждое следующее поколение отличалось новыми элементами (электронные лампы, транзисторы, интегральные схемы), технология изготовления которых была принципиально иной. В настоящее время существует общепринятая классификация поколений ЭВМ:

  • Первое поколение (1946 — начало 50-х гг.). Элементная база — электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.
  • Второе поколение (конец 50-х — начало 60-х гг.). Элементная база — полупроводниковые элементы. Улучшились по сравнению с ЭВМ предыдущего поколения практически все технические характеристики. Для программирования используются алгоритмические языки.
  • 3-е поколение (конец 60-х — конец 70-х). Элементная база — интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.
  • Четвёртое поколение (с середины 70-х — конец 80-х). Элементная база — микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.
  • Пятое поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, которая пока не увенчалась успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Вместе со сменой поколений ЭВМ менялся и характер их использования. Если сначала они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения расширилась. Сюда можно отнести обработку информации, автоматизацию управления производственно-технологическими и научными процессами и многое другое.

Что дальше?

Термин «квантовый скачок» означает, что в квантовом мире
изменения происходят скачками. Похоже, что где-то около 2020 года,
если не раньше, подобный скачок произойдет и в вычислительной
технике: к тому времени мы перейдем от традиционных кремниевых
полупроводников к более совершенным технологиям.

Результатом станут намного более компактные, быстродействующие и
дешевые компьютеры. Появится возможность наделять любые промышленные
продукты определенными интеллектуальными и коммуникационными
способностями. Банка кока-колы помещенная в холодильник, на самом
деле будет саморегистрироваться в его сети; предметы — автоматически
упорядочиваться. Каждый человек ежесекундно будет пользоваться
Сетью, хотя за большинством обращений к нему будут следить
специальные устройства, автоматически отвечая на вызовы или
переадресовывая их в службу передачи сообщений.

К 2030 году может начаться распространение вживленных устройств с
прямым доступом к нейронам. Ближе к середине столетия в мире
киберпространства будут царить микро- и наноустройства
(интеллектуальная пыль). К тому времени Интернет будет представлять
собой отображение всего реального мира. Представьте себе мир,
окутанный беспроводной сетью данных, по которой путешествуют
огромные объемы информации. Тогда такие фантастические и мистические
явления, как телепатия и телекинез, станут самым простым проявлением
Всемирной сети. Грубо говоря, телепатия будет выглядеть как
сгенерированная вашими нейронами информация, путешествуя в пакетах к
другим нейронам для расшифровки. Почти как протокол TCP/IP сегодня.
А телекинез (передвижение мыслью физических объектов) будут
производить наноустройства, активированные вашей мысленной командой.
Простейшие устройства, реагирующие на мысленные команды, существуют
уже и сегодня. Хотя к тому времени вам вряд ли захочется передвигать
реальные объекты, если возможно будет просто переместить их цифровые
копии. Без шлемов виртуальной реальности можно будет совершить
полноценный круиз в любой уголок земного шара, не покидая своей
квартиры. Мысленно можно будет вызвать цифровую проекцию любого
места, причем события в нем будут отображаться в реальном времени.
Или наоборот, спроецировать себя, в любую точку нашей планеты. Таким
образом, грань между кибер- и реальным пространством исчезнет.

На биологическом фронте исследования в области клетки приближают
возможность замены тканей или органов, включая нейроны, которые
раньше считались незаменимыми. Более того, клетки и ткани можно
будет наделять способностями обработки и передачи данных. Подобный
контроль над живыми процессами дает надежду на увеличение
продолжительности жизни: ученые не видят принципиальных препятствий
к тому, чтобы люди жили по несколько сотен лет.

К концу 21-го века, благодаря достижениям генной инженерии в
сочетании с биоинженерными тканями и имплантантами, люди станут
совсем не похожими на современных. Пока не ясно, какой процент
населения пожелает принять участие в подобных усовершенствованиях,
но отказавшиеся рискуют остаться сторонними наблюдателями, следя с
обочины за тем, как люди, развитые биоинженерными методами,
гигантскими шагами устремляются вперед рука об руку с разумными
машинами. Могу себе представить, как в какой-то момент человечество
разделится на два лагеря, будут социальные волнения, но прогресс не
остановить. Если все это будет происходить, как прогнозируется,
годах в 2050-х, то, как вы думаете, кто будет самой консервативной
частью общества? Правильно — нынешняя молодежь, правда, к тому
времени немного постаревшая. Примерно, как сейчас бабушки и дедушки
недоверчиво косятся на коробчатые компьютеры, так же будущее старшее
поколение будет недоверчиво смотреть на своих детей, получающих
биологические имплантанты при рождении и общающихся не открывая
рта.

Конечно, заглянуть вперед более чем на несколько лет можно лишь
чисто умозрительно, хотя в том что ко второй половине этого века
обрабатывающая мощность компьютеров превысит интеллектуальные
способности человека, можно не сомневаться. Вполне вероятно, что к
тому времени начнется и колонизация Солнечной системы. А к 22-му
веку и люди, и компьютеры широко распространятся по ее планетам и
начнут готовиться к освоению ближайших звездных систем.

Пока здравый смысл не приспособился к переменчивому миру
квантовой механики, это будущее кажется чуждым такому знакомому
современному миру. Путешествие во времени может завести и в рай, и в
ад, но во всяком случае скучным его не назовешь.

Введите квант

Классические вычисления, такие, которые осуществляет компьютер в вашем доме, основаны на вычислениях людей. Машина разбивает все вычисления на их основные части: двоичные цифры 0 и 1. В настоящее время наши компьютеры используют биты из двоичных цифр — потому что их легко реализовать с помощью переключателей, которые находятся либо в положении «включено», либо «выключено».

Квантовое вычисление основано на том, как вычисляет вселенная. Оно содержит все классические вычисления, но также включает в себя несколько новых концепций, пришедших из квантовой физики.

Вместо битов у квантового вычисления есть кубиты. Однако результат квантовых вычислений точно такой же, как и при классических вычислениях: количество битов.

Разница в том, что во время этого процесса компьютер может манипулировать кубитами с помощью битов. Он может поместить кубиты в суперпозицию состояний и запутать их.

Думайте о контенте и ВСЁМ экране

Начнем с поверхностей, которые мы в данный момент касаемся, чтобы выполнить действие. Учитывая, что подавляющее большинство современных графических пользовательских интерфейсов – это сенсорные дисплеи, с которыми чаще всего взаимодействуют с помощью больших пальцев – у нас непременно будет такое непреодолимое желание коснуться – самое главное наше чувство. Прикосновение к поверхности дает нам ощущение реального действия, контроля. А что если вместо того, чтобы нажимать на определенную точку, мы научили наших пользователей взаимодействовать со всей поверхностью?

Посмотрим, как это работает в  Instagram:

Вы когда-нибудь видели кнопку, которая позволяет вам просматривать сторис Instagram и вернуться к предыдущей? Наверное, нет, потому что вам всего лишь нужно коснуться левого края экрана.

Пользователи постепенно приходят к тому, что в картах можно нажать на любую область, в тексте нажать на любое слово для перевода. Для этого не обязательна визуализация кнопки.

Квантовые компьютеры

Квантовый компьютер будет состоять из компонентов субатомного
размера и работать по принципам квантовой механики. Квантовый мир —
очень странное место, в котором объекты могут занимать два разных
положения одновременно. Но именно эта странность и открывает новые
возможности.

Например, один квантовый бит может принимать несколько значений
одновременно, то есть находиться сразу в состояниях «включено»,
«выключено» и в переходном состоянии. 32 таких бита, называемых
q-битами, могут образовать свыше 4 млрд комбинаций — вот истинный
пример массово-параллельного компьютера. Однако, чтобы q-биты
работали в квантовом устройстве, они должны взаимодействовать между
собой. Пока ученым удалось связать друг с другом только три
электрона.

Уже есть несколько действующих квантовых компонентов — как
запоминающих, так и логических. Теоретически квантовые компьютеры
могут состоять из атомов, молекул, атомных частиц или
«псевдоатомов». Последний представляет собой четыре квантовых ячейки
на кремниевой подложке, образующих квадрат, причем в каждой такой
ячейке может находиться по электрону. Когда присутствуют два
электрона, силы отталкивания заставляют их размещаться по диагонали.
Одна диагональ соответствует логической «1», а вторая — «0». Ряд
таких ячеек может служить проводником электронов, так как новые
электроны будут выталкивать предыдущие в соседние ячейки.
Компьютеру, построенному из таких элементов, не потребуется
непрерывная подача энергии. Однажды занесенные в него электроны
больше не покинут систему.

Теоретики утверждают, что компьютер, построенный на принципах
квантовой механики, будет давать точные ответы, исключая возможность
ошибки. Так как в основе квантовых вычислений лежат вероятностные
законы, каждый q-бит на самом деле представляет собой и «1», и «0» с
разной степенью вероятности. В результате действия этих законов
менее вероятные (неправильные) значения практически исключаются.

Насколько близко мы подошли к действующему квантовому компьютеру?
Прежде всего необходимо создать элементы проводников, памяти и
логики. Кроме того, эти простые элементы нужно заставить
взаимодействовать друг с другом. Наконец, нужно встроить узлы в
полноценные функциональные чипы и научиться тиражировать их. По
оценкам ученных, прототипы таких компьютеров могут появиться уже в
2005 году, а в 2010-2020 годах должно начаться их массовое
производство.

Sony Life Space UX

Строго говоря, Sony Life Space UX — это не персональный компьютер, хотя, безусловно, компьютер. Life Space UX — это, прежде всего, ультракороткофокусный видеопроектор с разрешением 4K, способный выводить картинку с диагональю до 147 дюймов с минимального расстояния до стены. Да, речь идёт не об экране, а именно о стене дома или квартиры, и здесь мы приходим ко второму значению названия Life Space UX, под которым в Sony понимают принципиально новый пользовательский интерфейс, объединяющий проекционно-сенсорные технологии и физические стены помещения.

Проектор Life Space UX — лишь одна из множества возможных реализаций этого интерфейса. Он способен не только демонстрировать огромные изображения на стенах обычной комнаты, но и обеспечивать обратную связь: за счёт применения датчика глубины эти изображения становятся интерактивными. То есть любая стена, стол или другая ровная поверхность тем самым превращается в проекционный экран или в гигантский планшет: совсем недавно что-то подобное можно было увидеть только в научно-фантастических фильмах. При этом для формирования изображения с большой диагональю вам не понадобится самолётный ангар: проектор можно устанавливать практически вплотную к стене, и это само по себе уже весьма впечатляет.

Концепция Life Space UX предполагает создание выполненных в едином дизайне устройств, замаскированных под модную мебель с использованием алюминия, среди которых проектор, громкоговорители и специальные тумбы для прочей аппаратуры.

Видеопроектор Life Space UX предназначен для работы с игровой приставкой PlayStation 4, а также с фирменным облачным сервисом Gaikai, перезапуск которого ожидается в ближайшем будущем. Сам проектор появится в продаже уже летом этого года и будет стоить примерно $30-40 тыс. За эти деньги вы получите поистине уникальный игровой интерфейс и веб-телевидение, поэтому вполне возможно, что Life Space UX со временем действительно изменит наше представление о домашних электронных развлечениях.

Материальные интерфейсы

Кто-то подметил, что с каждым поколением компьютеров пользовательские интерфейсы становятся всё непосредственнее. От команд, вводимых с помощью клавиатуры, мы перешли к графическому интерфейсу, где объекты, которыми приходится оперировать, можно видеть собственными глазами, но взаимодействовать с ними напрямую всё ещё нельзя. Для этого требуется ещё один объект — стрелка, повторяющая движения компьютерной мыши.

Сенсорные экраны устранили лишнее звено в этой цепочке: теперь на нарисованную кнопку можно нажать своим собственным пальцем. Однако она по-прежнему остаётся нарисованной. Гаптические технологии способны придать им реалистичности, но это полумеры. А что дальше?

А дальше разница между «тут», перед экраном, и «там», за стеклом, должна исчезнуть. От управления пикселями на экране, складывающимися в метафоры пользовательского интерфейса, мы вернёмся к естественному взаимодействию с реальными предметами, не требующему метафор. Только на этот раз эти предметы будут зависеть от и влиять на информацию в компьютере.

Интерфейсы, построенные на таком принципе, называют материальными (tangible). Исследования в этой области ведутся с конца девяностых годов прошлого века, и не без успеха — элементы материальных интерфейсов можно найти повсюду. Простейший пример: переключение ориентации экрана в смартфонах и планшетах.

Традиционный интерфейс, решающий эту задачу — это специальная кнопка, которую нужно нажать, чтобы содержимое экрана повернулось. Чтобы использовать такой интерфейс, пользователь должен знать о существовании кнопки и её назначении.

Материальный интерфейс не требует кнопок. Ориентация дисплея меняется автоматически, когда встроенный акселерометр чувствует, что устройство повернули. Командой, влияющей на состояние компьютера, становится сам поворот устройства — прямое и естественное взаимодействие с предметом, которому не нужно обучать.

Образцом более сложного материального интерфейса может служить прототип под названием PaperTab, который продемонстрировала на минувшем CES компания Plastic Logic. На столе перед пользователем PaperTab лежит несколько листов гибкой электронной бумаги, отображающих различные документы. Компьютер, с которым он работает — это не каждый лист по отдельности, а вся конструкция в сумме.

Каждый лист можно сравнить с окном на экране дисплея. Листы в центре стола — это документы, листы на краю — списки документов или приложений. Прикоснувшись одним листом к другому, можно копировать документы. Чтобы рассмотреть крупный документ получше, необходимо положить несколько листов рядом: его содержимое заполнит всю их площадь.

PaperTab далеко не идеален. Он не похож на систему, на которую хотелось бы променять привычный десктоп, но это недостаток, свойственный прототипам подобного рода. Тем не менее, главное ясно даже из этого видео: для управления PaperTab используются не кнопки и меню, а естественное взаимодействие с предметами на столе.

***

Новые интерфейсы не заменят клавиатуру и мышь, используемые с персональными компьютерами. Как и сенсорные экраны, они лишь дополнят их или — это даже вероятнее — будут применяться в устройствах, которые пока не существуют.

Каких? Кто знает. С уверенностью можно сказать только одно: в кино наподобие «Особого мнения» они не попадут. Им, в отличие от мультитача, недостаёт зрелищности. И это, если вдуматься, хорошо: чем менее заметными станут интерфейсы, тем лучше.

Искусственный мозг

Точно так же, как суперкомпьютеры чрезвычайно полезны в картографировании генома человека, решении медицинских проблем и в другом, точные модели человеческого мозга существенно облегчат диагностику, лечение и понимание сложностей человеческой мысли и эмоций. В сочетании с технологией визуализации, врачи смогут выявлять проблемные зоны, моделировать различные формы лечения и даже добраться до корней многих вопросов, которые мучают нас с начала времен. Имплантируемые и прививаемые чипы и другие технологии помогут наблюдать и даже изменять уровень серотонина и других нейромедиаторов для улучшения настроения и общего эмоционального состояния, а неправильная работа отдельных участков мозга в процессе травм, например, и вовсе может быть искоренена.

Помимо успехов в медицине, которые обещают нам суперкомпьютеры, есть также вопрос искусственного интеллекта. Уже сейчас компьютеры средней производительности могут научиться некоторым возможностям искусственного интеллекта, среди которых умная система подборки рекомендаций книг и телевизионных программ — самое меньшее. Представьте себе интернет-врача, который сможет заменить собой настоящего врача и даже целый консилиум лучших врачей мира.

8.

Лэптоп Prime Gaming


Пожалуй, эта новинка окажется мечтой любого геймера. Дизайнер Кайл Черри предложил оригинальную концепцию игрового ноутбука с тремя складными OLED дисплеями. Автор предлагает использовать в дополнение к основному 10-дюймовому OLED дисплею (соотношения сторон 16:10) ещё две панели Aux OLED. В сложенном состоянии Prime выглядит как обычный 13-дюймовый ноутбук. В раскрытом геймер получит отличный широкоформатный дисплей с диагональю 26 дюймов (соотношение сторон 32:10). Предполагается, что корпус ноутбука будет выполнен целиком из алюминия, а сам компьютер будет оснащён мощной системой охлаждения.

Toshiba 5-in-1

После выхода первого Microsoft Surface RT в октябре 2012 года каждый уважающий себя производитель компьютеров считает своим долгом разработать собственный гибридный планшет под управлением Windows RT: сегодня речь идёт уже о версии 8.1. При этом иногда у конструкторов получаются довольно странные изделия, как, например, прошлогодний Acer Aspire R7 — 15,6-дюймовый ноутбук, способный превращаться в трансформер, планшет и даже в десктоп.

В этом году поразить посетителей CES решили в компании Toshiba, которая продемонстрировала концептуальный гибрид 5-in-1, то есть «пять в одном». Как и Acer R7, он притворяется обычным лэптопом, но при этом способен становиться трансформером, планшетом с беспроводной Bluetooth-клавиатурой, монитором для презентаций, а также планшетом для рисования, при котором сенсорный экран располагается перед пользователем под углом в 270 градусов.

В отличие от громоздкого Acer R7, это настоящий планшет: тонкий, лёгкий и практичный. К тому же в комплект поставки входит электронное перо, позволяющее пользоваться продвинутыми пакетами для создания и редактирования изображений.

Как и Razer, Toshiba пока не объявляла ни цены, ни даты официальной презентации этого устройства, но поскольку уже в январе существовало достаточное количество готовых экземпляров, предоставляемых для тестирования, можно предположить, что совсем скоро оно появится в продаже.

Почему WIMP-интерфейс до сих пор с нами?

Преимущества:

  • Использование знакомых метафор и простой способ взаимодействия («видеть и указывать») позволяет довольно быстро обучиться взаимодействию с пользовательским интерфейсом.
  • Единообразие элементов интерфейса создаёт единый стандарт взаимодействия для большинства приложений с которыми может столкнуться пользователь, что позволяет переносить пользовательский опыт между различными приложениями.

Недостатки:

  • WIMP-интерфейс плохо приспособлен для удовлетворения потребностей как новых, так и продвинутых пользователей. Для того чтобы продуктивно выполнять свою работу, двум типам пользователей подойдут пользовательские интерфейсы различной сложности.
  • В связи с ограниченностью экранного пространства, ограничено и множество функций приложения, которые можно предоставить пользователю.
  • Из-за очень простого способа взаимодействия («видеть и указывать»), у пользователя нет возможности естественным образом передавать сложные намерения.
  • Ярлыки — они позволяют располагать иконки объектов в легко доступных для пользователя местах независимо от настоящего расположения объекта.
  • «Горячие клавиши» — позволяют сократить время вызова команд приложения, что несколько повышает эффективность работы продвинутых пользователей.
  • Жесты окнами — такие жесты позволяют упростить изменение расположения окон приложений (правый край — на пол-экрана, верхний угол — на полный экран).
  • Виртуальные рабочие столы — позволяют расширить рабочую область за счёт добавления виртуального экранного пространства.
  • AR UI — взаимодействие с виртуальными элементами интерфейса в реальном окружении
  • VR UI — погружение пользователя в виртуальное окружение
  • Голосовой UI — передача команд компьютеру на естественном языке
  • Жестовый UI — передача команд компьютеру через движение частей тела
  • Осязаемый UI — взаимодействие c реальными объектами
  • Нейрокомпьютерный UI — передача команд компьютеру через мыслительные процессы
  • Жестовое меню — эффективная замена списочному и радиальному меню
  • Управление взглядом — замена компьютерной мыши
  • Предсказывание движения курсора — обучение особенностям поведения пользователя
  • Датчик давления для мыши — возможность расширить выразительность обычного нажатия кнопки
  • ZUI (Zoomable User Interface) — сложно объяснить, быстрее будет увидеть
  • Тегирование файлов — удобный поиск файлов, позволяющий абстрагироваться от иерархической структуры файловой системы

Имитация мира

Хотя разработка этакой «Матрицы», безусловно, будет впечатлять, перенос наших повседневных культурных и социальных изменений с целью наблюдения за ними и прогнозирования, могут быть крайне полезны для нашего нестабильного общества. Представьте, как упростятся вопросы городского планирования, застройки новых районов, неравномерного распределения продуктов питания и ресурсов.

Суперкомпьютеры не будут гадать на кофейной гуще: они будут получать информацию из всех возможных источников — от последних твитов в топе до использования энергетической сети на данный момент — и создавать модели, которые помогут регулировать не только текущие факторы, но и будущие планы. Дефицит газа, электричества, воды, планомерное использование этих ресурсов и обеспечение энергией масштабных событий вроде Олимпиады перестанут волновать людей.

С беспроводным интернетом, который захватил страны и весь мир, качественная модель нашего мира в один прекрасный момент не будет отличаться от мира, в котором мы живем. Только сейчас мы начинаем воплощать в жизнь все эти возможности, которые не были бы доступны без суперкомпьютеров.

Razer Project Christine

«Проект Кристина» — разработка известнейшего производителя игровых компьютерных манипуляторов и самих игровых компьютеров американской компании Razer. Это одна из тех фирм, которые дают нам почувствовать настоящий «вкус будущего» — или, говоря сухим языком, настоящую инновационность. Доказательством тому могут служить практически любые изделия под маркой Razer. Достаточно вспомнить концептуальный контроллер Artemis для авиасимуляторов, игровой ноутбук Blade Pro или игровой планшет Edge Pro под управлением Windows 8. Всё это передовые разработки, совмещающие привычные формы с непривычной функциональностью или, наоборот, наполняющие обычными функциями необычные формы. Project Christine как раз из числа последних.

«Кристина» представляет собой модульный персональный компьютер, который собирается из отдельных блоков, устанавливаемых в специальную раму. Начинка такой машины может быть любой, то есть нет никаких ограничений по выбору процессоров, памяти, графических ускорителей, накопителей, блоков питания и прочих комплектующих. При этом сами модули могут устанавливаться и заменяться за считаные секунды.

В середине рамы Project Christine устанавливается блок управления с сенсорным экраном, на который выводятся сведения о каждом из модулей — от температуры и тактовой частоты процессора до настроек RAID-массива и выбора операционной системы. И, конечно же, через этот блок доступны самые широкие возможности разгона системы.

Отдельного внимания заслуживает реализованная в Project Christine система охлаждения: в модулях применяется жидкостная система на основе минерального масла, которая при установке блоков в раму работает во взаимодействии со встроенной в неё центральной водяной системой охлаждения. Эффективность такой схемы настолько высока, что конструкторам удалось сделать её полностью бесшумной, и это ещё один её плюс.

Одно из принципиальных свойств проекта «Кристина» заключается в том, что пользователь, по крайней мере теоретически, может мгновенно изменять конфигурацию своего компьютера в зависимости от возникающих задач. Пара движений — и перед нами рабочий компьютер под управлением Linux с пакетом офисных программ. Ещё пара манипуляций — и в нашем распоряжении терминал, настроенный для безопасного интернет-сёрфинга. Меняем ещё несколько блоков — и получаем мощную игровую машину с парой видеокарт и последней версией Windows. И всё это великолепие эффективно охлаждается профессионально сконструированной и бесшумной жидкостной системой.

Project Christine стал настоящим хитом CES 2014: как саму идею, так и элегантность её реализации оценили все, ком довелось увидеть эту машину. Но насколько коммерчески успешным будет такой продукт сегодня — большой вопрос: для значительной части пользователей компьютеры превратились просто в ещё один бытовой прибор с заведомо избыточной производительностью. По сравнению с началом двухтысячных сегодня очень немногих интересует обладание самым-самым мощным процессором и лучшей в мире видеокартой, большинство же вряд ли даже сможет назвать хотя бы примерную конфигурацию своего нынешнего компьютера. Впрочем, продукция Razer изначально ориентирована на специфический контингент, для которого всё это до сих пор имеет принципиальное значение и который не пожалеет трудовой копейки за самое навороченное железо.

Точной даты начала серийного производства Project Christine объявлено не было: на сайте Razer предлагается подписаться на получение дополнительной информации. Но, судя по интересу, проявленному к этому проекту на CES 2014, у него есть все шансы не только появиться на свет, но и сделать это в ближайшем будущем.

Проблема создания квантового компьютера

Все прототипы компьютеров будущего – ДНК-компьютеры, молекулярные и фотонные — разные грани одного целого — идеи создания полнофункционального квантового компьютера. Все микрочастицы, будь то кванты, атомы или молекулы, могут быть описаны волновой функцией состояния и подчиняются единым законам квантовой механики. Таким образом, работы над каждым типом компьютеров базируются на одном фундаменте. Есть у них и общие проблемы. Необходимо научиться объединять частицы в совокупности и работать как с каждой частицей в отдельности, так и с совокупностью в целом. К сожалению, на сегодняшний день технологии не позволяют производить такие манипуляции. К тому же система управления должна поддерживать масштабируемость системы частиц, благодаря которой можно наращивать мощность компьютера. Решение этой проблемы станет очередным прорывом в науке.

Над созданием квантового компьютера работают в лабораториях всего мира, в том числе и российских. Ведущие научные сотрудники Казанского физико-технического института Сергей Моисеев и Сергей Андрианов прокомментировали текущую ситуацию в этой области. С 2001 года они начали вести работы в области квантовой памяти и на сегодняшний день исследуют новые твердотельные материалы, пригодные для хранения кубитов. Также решается задача длительности хранения информации. Пока что это время составляет всего несколько миллисекунд. На вопрос, почему квантовый компьютер до сих пор не существует, отвечает Сергей Моисеев: «Насколько я себе представляю, дело в том, что сложность этой проблемы была не сразу осознана. После того как был проведен первый цикл исследований, были сформулированы проблемы, в том числе и физические, которые предстояло решить. На данный момент создание квантового компьютера напоминает своего рода современный Манхэттенский проект. Цель — создать квантовый компьютер, оперирующий 1000 кубитами, с возможностью его масштабируемости».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector