Белые карлики их вес, состав и строение

Карлики в кино

  • В обычных фильмах слово англ. dwarf традиционно переводится как «карлик», а в фэнтези — как «гном».
  • Freaks — фильм 1932 года (США), долгое время запрещённый к показу. Фильм повествует о любви циркового карлика к воздушной гимнастке.
  • И карлики начинают с малого — фильм 1970 года (ФРГ), режиссёра Вернера Херцога о том, как карлики взбунтовались в своей колонии.
  • «Асса» — в этом фильме Сергея Соловьёва (СССР, 1987 год) снимались актёры Театра лилипутов.
  • «Через тернии к звёздам» — в этом фильме роль могущественного промышленного магната Туранчокса, скрывающего свой карликовый рост, сыграл Владимир Фёдоров. В другом советском фильме — «Руслан и Людмила» (1972) — он снялся в роли главного антагониста, Черномора.
  • «Уиллоу» — фильм-сказка Рона Ховарда и Джорджа Лукаса 1988 года. Карлики играют несколько главных ролей, а также население деревни элвинов.
  • «Маленькие пальчики» — американский фильм 2003 года с Гэри Олдменом в главной роли (играет карлика). Также в этом фильме снялось множество настоящих актёров-карликов.
  • В фильме «Плохой Санта» играет карлик Тони Кокс.
  • В телесериале «Игра престолов» (2011) роль Тириона Ланнистера исполнил известный голливудский актёр-карлик Питер Динклэйдж. В фильме «Пенелопа» он также исполнил одну из главных ролей.
  • «Американский пирог 5: Голая миля» — фильм 2006 года. Группа карликов в роли футболистов футбольной команды университета.
  • Роль Джимми в фильме «Залечь на дно в Брюгге» (Великобритания, США, 2008 год) исполнил актёр-карлик Джордан Прентис.
  • В фильме «Жизнь в миниатюре» Михаила Шпилевского и Андрея Полупанова главный герой — карлик (актёр — Александр Дёмкин), и фильм снят «глазами главного героя» (Беларусь, 2012 год).
  • Гарри Поттер — роль профессора Флитвика (первые 6 фильмов, а также восьмой фильм), гоблина Крюкохвата (последние 2 фильма) и служащего Гринготтса (первый фильм) исполняет знаменитый английский актёр-карлик Уорик Дэвис. Кроме того, Дэвис принимал участие в съёмках «Звёздных войн» (эпизоды и ), «Хроник Нарнии», а также упомянутого выше «Уиллоу». В сериале «Десятое королевство» он исполнял роль карлика Жёлудя. Сыграл главную роль в «Лепреконе».
  • В фильмах о супершпионе Остине Пауэрсе у врага главного героя был низкорослый клон — Мини-Мы. Эту роль сыграл известный североамериканский актёр-карлик Верн Тройер.
  • «Альф» — роль Альфа в нескольких сериях исполнял актёр-карлик Михай Месарош.
  • В фильме Терри Гиллиама «Бандиты времени» главные роли — роли, собственно, бандитов — исполнили карлики. Режиссёр специально замыслил показать карликов не в качестве диковин, а как полноценных и отважных героев.
  • В фильме «Проект X: Дорвались» карлика засовывают в духовку, и он, мстя за это парням, залетает в бассейн на любимой машине отца одного из них.
  • В сериале «Игра престолов» роль карлика Тириона Ланнистера сыграл Питер Динклэйдж
  • В фильме «Сказки на ночь» Скитера Бронсона бьёт по ноге злой карлик.
  • В фильме «Кто убил Виктора Фокса?» одну из главных ролей сыграла Мередит Итон.
  • В фильме «Белоснежка: Месть гномов» роли гномов играют карлики Дэнни Вудберн, Мартин Клебба, Джордан Прентис, Марк Повинелли, Себастьян Сарасено, Рональд Ли Кларк и Джо Гноффо.
  • В фильме «Пиксели» роли Эдди «Огненный бластер» Планта сыграл Питер Динклэйдж.
  • В фильме «Станционный смотритель» карлик-актёр Питер Динклэйдж играет главную роль.
  • В сериале «Твин Пикс» (1990—1991) роль Карлика — Человека из другого места — исполнил актёр Майкл Дж. Андерсон.
  • В фильме «Я, снова я и Ирэн» у главного героя отбивает невесту темнокожий карлик, сыгранный Тони Коксом.
  • В первой, второй, третьей и пятой частях фильмов «Пираты Карибского моря» — карлика Марти, члена команды капитана Джека Воробья, играет Мартин Клебба.
  • В фильме «Люди Икс: Дни минувшего будущего» доктора Боливара Траска сыграл актёр-карлик Питер Динклэйдж.
  • В фильме «Мстители: Война Бесконечности» кузнеца сыграл Питер Динклэйдж.
  • В фильме «Джокер» коллегу Артура Флега Гэри сыграл британский актёр Ли Гилл.

Атмосфера холодных звезд

Еще одним признаком, по которому можно определить местонахождение таких звезд – это наличие метана. Этот газ не может накапливаться на обычных звездах из-за их высоких температур. Однако коричневые карлики относительно холодны, и поэтому метан легко накапливается в их атмосфере. Метановая атмосфера такого типа звезд является очень плотной.

На их поверхности бушуют неистовые ветры, и сюда никогда не проникают лучи других звезд, соответственно, погода никогда не бывает благоприятной. Поэтому на фото коричневые карлики выглядят негостеприимно. Исследователи космоса никогда не приближаются к этим звездам.

Посадить корабль на их поверхность невозможно. Сила их тяжести настолько чудовищна, что астронавты сразу же погибли бы в ее тисках еще до того, как корабль превратился бы в груду металла.

Многие из бурых карликов активно формируют около себя газопылевые облака, из которых, в свою очередь, формируются планеты. Такая планетная система недавно была обнаружена в созвездии Хамелеона.

Способ отличия от легких звезд

Светило с небольшой массой — еще один объект, от которого бывает непросто отличить коричневый карлик. Что такое звезда? Это термоядерный котел, где постепенно сгорают все легкие элементы. Один из них — литий. С одной стороны, в недрах большинства звезд он достаточно быстро заканчивается. С другой — для реакции с его участием требуется сравнительно низкая температура. Получается, что объект с литиевыми линиями в спектре, вероятно, принадлежит к классу коричневых карликов. У этого метода есть свои ограничения. Литий часто присутствует в спектре молодых звезд. Кроме того, коричневые карлики могут за период в полмиллиарда лет исчерпать все запасы этого элемента.

Отличительным признаком может быть и метан. На заключительных этапах жизненного цикла коричневый карлик — звезда, температура которой позволяет накопить внушительное его количество. Другие светила не могут остыть до такого состояния.

Для различия коричневых карликов и звезд измеряют и их яркость. Светила тускнеют в конце своего существования. Карлики остывают всю «жизнь». На завершающих этапах они становятся настолько темными, что перепутать их со звездами невозможно.

Гелий – 3

Коричневый карлик вполне может быть классифицирован как просто странная разновидность очень больших планет. В конце концов, планеты тоже постоянно охлаждаются, поскольку стареют. И у них нет новых источников энергии, которые будут подогревать их в течение миллиардов или триллионов лет.

Но большинство коричневых карликов играют в особую игру. Требуется определенный порог по массе (примерно в 80 раз больше, чем у Юпитера), чтобы достичь огромных температур и давлений в ядре объекта, которые необходимы для слияния водорода в гелий. Именно это необходимо для того, чтобы космический объект мог считать себя звездой. Но есть гораздо более низкий порог, примерно в 13 раз больший массы Юпитера, при котором может происходить другой вид синтеза.

В этой гораздо более прохладной обстановке дейтерий (который представляет собой один протон и один нейтрон, склеенные вместе в ядре) может ударить свободный протон. Эта реакция превратит дейтерий в гелий-3, и высвободит немного энергии. Обычные звезды проходят краткую фазу горения дейтерия, после которой они достаточно нагреваются. Но коричневые карлики могут поддерживать этот процесс достаточно длительное время. Но так никогда и не переключаются на полномасштабный термоядерный синтез.

Новые загадки

Коричневый карлик (вверху)

Астрономы XXI века ведут охоту на коричневых карликов. Сканируя небо в инфракрасном диапазоне, обнаружение «холодных» светил увеличилось в разы. Измеряются их температуры, массы, изучаются атмосферы, составляются карты поверхностей. Новые данные не только помогают ученым понять природу небесных тел. Иногда они опровергают устоявшиеся модели, знания. Парадокс. Чем больше открываешь, тем больше предстоит открыть.

Примером этому служит исследование, проведенное учеными Гарвард-Смитсоновского центра астрофизики. Открыв 623 неизвестных коричневых карлика, спектроскопическому анализу подверглись четыре. Полученная информация противоречит представлению о том, что карлики и соседние звезды главной последовательности формируются одновременно в процессе коллапса. Оказалось, что субзвезды образовались существенно позднее звезд, находящихся с ними в одной системе. Пришлось формулировать новую теорию об одиночном формировании исследуемых объектов.

Сердце красного гиганта

Если масса звезды не превышает некоторой пороговой величины (1,44 массы Солнца), ей суждено стать карликом. Каким образом это происходит? После исчерпания водорода в центре звезды образуется плотное гелиевое ядро – в сущности, шлак, наработанный за время ее жизни.

Энергия больше не отводится из центра, значит, растут температура и плотность – ведь звезду сжимает собственная гравитация. В какой-то момент они достигают такого значения, при котором уже гелий способен вступать в реакцию синтеза, образуя углерод. В оболочке звезды в это время происходят процессы, ведущие к ее раздуванию и охлаждению внешних областей. Звезда становится красным гигантом.

Ядро красного гиганта имеет изотермические свойства, охлаждаясь в основном не за счет отдачи излучения с поверхности, а в результате уноса энергии нейтрино – частицами, для которых ядро прозрачно.

Красный гигант – нестабильная звезда. В конце концов, она теряет свои внешние слои – при этом образуются такие зрелищные космические феномены, как планетарные туманности. Остается только горячее гелиевое ядро с большим или меньшим содержанием углерода и – в очень малой концентрации – более тяжелых элементов (кислород). Это ядро и есть белый карлик.

Все очень быстро

Однако это не длится вечно. Самые большие коричневые карлики расходуют весь свой дейтерий за несколько миллионов лет. Причина этого в том, что подобные тела не разделены на отдельные слои.

В звездах, подобных Солнцу, есть плотное ядро, состоящее из водорода и гелия. Оно окружено слоем плазмы, в котором преобладают лучистые энергии. И этот слой окружен неким “кипящим супом”. Но у самых маленьких звезд и коричневых карликов ядра, как такового, нет.  У них есть только одна конвекционная оболочка, простирающаяся от поверхности до центра, способная транспортировать материал внутрь и наружу. Из самых внутренних областей до поверхности объекта и обратно.

Таким образом, любой дейтерий, который имеет коричневый карлик, в конечном итоге окажется втянутым в его в центр. Где и превратится в гелий-3. (В объекте со слоями некоторое количество дейтерия может оставаться в каких – то местах без изменения).

Что же происходит с маленькими коричневыми карликами? Они просто постепенно остывают. Их внутренняя температура находится ниже порога, необходимого для поддержания реакции. Энергия дейтериевых реакций им недоступна.

Открытие странных объектов

История изучения необычных звезд взяла старт в начале XX века, когда астрономы объединили результаты наблюдений нескольких близкорасположенных кратных звездных систем – 40 Эридана, Сириуса и Проциона. Выяснилось, что в каждой из этих систем один из компонентов характеризуется странным сочетанием свойств. Их орбитальные параметры свидетельствовали о достаточно большой массе, сравнимой с массой обычной звезды; спектральные характеристики указывали на высокую температуру. Светимость же этих объектов оказалась весьма малой – это были слабые, тусклые звездочки.

В 1917 году был открыт первый одиночный объект с подобными свойствами – звезда Ван Маанена, расположенная в 14 световых годах от Солнца. Масса ее составляет 0,7 солнечных масс, и при этом наше Солнце излучает более чем в пять тысяч раз мощнее, чем звезда Ван Маанена, получившая имя в честь своего первооткрывателя – голландского астронома, работавшего в США.

В 1922 году еще один голландский американец, В. Я. Лейтен, открывший несколько таких объектов, предложил для этого класса звезд название, которое мы употребляем и поныне: «белый карлик». Здесь термин «белый» означает «горячий» и связан со спектральными особенностями.

Ответы на вопросы

  1. Чем отличается белый карлик от нейтронной звезды? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа.

    Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.

  2. Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!

  3. Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
  4. Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
  5. Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.

    Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.

Научно-популярный фильм о героях нашей статьи

Вырожденный газ

До того как Ральф Фаулер в 1922 году в своей работе «Плотная материя» дал объяснение характеристикам плотности и давления внутри белых карликов, высокая плотность и физические особенности такого строения казались парадоксальными. Фаулер предположил, что в отличие от звезд главной последовательности, для которых уравнение состояния описывается свойствами идеального газа, в белых карликах оно определяется свойствами вырожденного газа.

График зависимости радиуса белого карлика от его массы

Обратите внимание: ультрарелятивистский предел ферми-газа совпадает с пределом Чандрасекара. Вырожденный газ образуется, когда расстояние между его частицами становится меньше волны де-Бройля, а значит, что на его свойствах начинают сказываться квантово-механические эффекты, вызванные тождественностью частиц газа

Вырожденный газ образуется, когда расстояние между его частицами становится меньше волны де-Бройля, а значит, что на его свойствах начинают сказываться квантово-механические эффекты, вызванные тождественностью частиц газа.

В белых карликах, из-за огромных плотностей, оболочки атомов разрушаются под силой внутреннего давления, и вещество становится электронно-ядерной плазмой, причем электронная часть описывается свойствами вырожденного электронного газа, аналогичными поведению электронов в металлах.

Что такое белый карлик: звезда или фантом?

Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.

Белый карлик

Схема термоядерного синтеза звезды

Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.

Определение размеров

Коричневые карлики рождаются как звезды, некоторое время излучают тепло, а иногда даже синтезируют элементы в своих недрах. Итак, есть ли причина назвать их звездами?

Коричневый карлик – объект маленький. Очень маленький для звезды. Конечно, эти объекты больше Юпитера. Но к настоящему дню в космосе обнаружено уже много объектов, которые больше Юпитера. Красный карлик не намного крупнее обычной газовой планеты – гиганта.

Звездам присуще одна особенность – это реакция термоядерного синтеза, происходящие в их ядрах. Высвобождаемые энергии постоянно конкурируют с внутренней гравитацией, пытаясь расширить внешние слои звезды.

Но, как мы знаем, коричневые карлики не имеют таких свойств. И в отличие от планет, у них нет скалистых ядер или ледяных мантий. Все, что у них осталось, – это экзотическая квантовая сила, известная как давление вырождения.  Она определяет, сколько частиц может поместиться в определенном объеме. Коричневые карлики полностью поддерживаются давлением вырождения, поэтому они имеют минимально возможный размер для своей массы.

Граница между большими планетами и маленькими звездами не просто размыта. Существует совершенно отдельный класс объектов. Они обладают одновременно свойствами как планет, так и звезд. Но при этом не являются ни тем, ни другим.

Можно сказать, что коричневые карлики – это подростки небесного царства.

Рассказать всей Вселенной!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector