Первый самолет в истории
Содержание:
Шасси
Еще один важный элемент конструкции любого самолета — шасси. Оно служит для передвижения аэроплана по земле или воде при рулении, взлете и посадке.
Шасси может быть колесным, лыжным и поплавковым. Существуют три основные схемы расположения шасси: с хвостовым колесом, с передним колесом и велосипедного типа. В первом случае две главные опоры находятся ближе к передней части, а вспомогательная, хвостовая, — сзади. Во втором случае главные опоры расположены ближе к задней части, а в носовой части находится переднее колесо.
Что касается шасси велосипедного типа, то одна главная опора находится в передней части фюзеляжа, вторая — в задней, а две вспомогательные крепятся обычно на крыльях. Схема расположения лыжного шасси идентична, с той лишь разницей, что вместо колес используются лыжи. А вот с поплавковым шасси все немного по-другому.
Существуют следующие типы гидросамолетов: поплавковые, летающие лодки и самолеты-амфибии.
У поплавковых самолетов две основных схемы расположения шасси: первая — два основных поплавка крепятся по бокам фюзеляжа, вторая — основной поплавок крепится к фюзеляжу, а два вспомогательных — к крыльям.
У летающей лодки роль основного поплавка выполняет сам фюзеляж, имеющий форму лодки, а вспомогательные поплавки крепятся к крыльям.
Самолет-амфибия — это та же летающая лодка, но кроме поплавкового шасси у нее есть убирающееся колесное шасси.
Рассмотрим устройство колесного шасси более подробно.
Шасси современного самолета состоит из:
- амортизационной стойки, которая обеспечивает плавность хода при взлете и передвижении самолета по аэродрому, а также смягчает удары при посадке;
- бескамерных пневматических колес, снабженных тормозами;
- тяг, раскосов и шарниров, которые служат для уборки и выпуска шасси и через которые амортизационные стойки крепятся к крылу.
Для достижения хороших летных характеристик у большинства самолетов шасси после взлета убираются в фюзеляж либо крыло. Исключение составляют небольшие и тихоходные машины. Но даже неубирающиеся шасси закрывают обтекателями для снижения аэродинамического сопротивления.
Закрылки самолета. Основные виды.
Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По своему устройству и манипуляциям закрылки делятся на:
- простые закрылки (самый первый и самый простой вид закрылок)
- щитовые закрылки
- щелевые закрылки
- закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)
Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.
Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.
Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.
Предкрылки. Основные функции.
Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.
Спойлеры и их задачи.
Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.
А зачем же нужно увеличивать подъемную силу? Вообще требуется не столько увеличение подъемной силы, сколько уменьшение скорости самолета, по крайней мере в гражданской авиации. А поскольку эти две величины непосредственно связаны, потому и происходит одно за счет другого.
Уменьшение скорости необходимо при взлете и посадке для обеспечения большей безопасности и уменьшения длины взлетной полосы. Кроме того, боевым самолетам довольно часто при выполнении того или иного маневра необходимо очень быстро увеличить либо уменьшить подъемную силу, для чего и служит механизация крыла.
Суть механизации
Итак, если говорить в общем, то механизация крыла привела к тому, что были значительно улучшены взлетно-посадочные параметры самолета. Такой результат был достигнут за счет сильного увеличения максимального коэффициента подъемной силы.
Суть этого процесса заключена в том, что добавляются специальные устройства, которые усиливают кривизну профиля крыла аппарата. В некоторых случаях получается и так, что увеличивается не только кривизна, но и непосредственная площадь этого элемента самолета. Из-за изменения этих показателей полностью меняется и картина обтекаемости. Эти факторы и являются определяющими в увеличении коэффициента подъемной силы.
Важно отметить, что конструкция механизации крыла выполняется таким образом, чтобы в полете все эти детали были управляемыми. Нюанс кроется в том, что на малом углу атаки, то есть при полете уже в воздухе на большой скорости, они фактически не используются
Весь их потенциал раскрывается именно при посадке или взлете. В настоящее время различают несколько видов механизации.
Как устроен самолет
Вот как называются части самолета:
- фюзеляж;
- крылья;
- хвостовое оперение;
- шасси;
- двигатели;
- авионика.
Устройство самолета.
Это несущая часть воздушного судна. Его главное назначение — образование аэродинамических сил, а второстепенное — установочное. Он служит основой, на которую устанавливают все остальные части.
Фюзеляж
Если говорить о частях самолета и их названиях, то фюзеляж — одна из самых важных его составляющих. Само название происходит от французского слова “fuseau”, которое переводится, как “веретено”.
Планер можно назвать “скелетом” самолета, а фюзеляж — его “телом”. Именно он связывает крылья, хвост и шасси. Здесь размещается экипаж лайнера и все оборудование.
Он состоит из продольных и поперечных элементов и обшивки.
Крылья
Как устроено крыло самолета? Оно собирается из нескольких частей: левая или правая полуплоскости (консоли) и центроплан. Консоли включают наплыв крыла и законцовки. Последние могут быть разными у отдельных видов пассажирских лайнеров. Есть винглеты и шарклеты.
Крыло самолета.
На крыло устанавливают меньшие консоли для улучшения их работы. Это элероны, закрылки, предкрылки и т.д. Внутри крыльев расположены топливные баки.
На работу крыла влияет его геометрическая конструкция — площадь, размах, угол, направление стреловидности.
Хвостовое оперение
Оно располагается в хвостовой или носовой части фюзеляжа. Так называют целую совокупность аэродинамических поверхностей, которые помогают пассажирскому лайнеру надежно держаться в воздухе. Они разделяются на горизонтальные и вертикальные.
К вертикальным относят киль или два киля. Он обеспечивает путевую устойчивость воздушного судна, по оси движения. К горизонтальным — стабилизатор. Он отвечает за продольную устойчивость самолета.
Шасси
Это те самые устройства, которые помогают самолету взлетать или садиться, рулить по взлетно-посадочной полосе. Это несколько стоек, которые оборудованы колесами.
Вес пассажирского лайнера напрямую влияет на конфигурацию шасси. Чаще всего используется следующая: одна передняя стойка и две основных. У Аэробуса А320 именно так располагаются шасси. У воздушных судов семейства Боинг 747 — на две стойки больше.
В колесные тележки входит разное количество пар колес. Так у Аэробуса А320 — по одной паре, а у Ан-225 — по семь.
Во время полета шасси убираются в отсек. Когда самолет взлетает или садиться. Они поворачиваются за счет привода к передней стойке шасси или дифференциальной работы двигателей.
Двигатели
Говоря о том, как устроен самолет и как он летает, нельзя забывать о такой важной части самолета, как двигатели. Они работают по принципу реактивной тяги
Они могут быть турбореактивными или турбовинтовыми.
Их крепят к крылу самолета или его фюзеляжу. В последнем случае его помещают в специальную гондолу и используют для крепления пилон. Через него подходят к двигателям топливные трубку и приводы.
У самолета обычно по два двигателя.
Авионика
Это все те системы, которые обеспечивают бесперебойную работу самолета в любых погодных условиях и при большинстве технических неисправностях.
Сюда относят автопилот, противообледенительная система, система бортового электроснабжения и т.д.
Угол атаки
Чтобы доступно объяснить, что такое механизация, необходимо изучить еще один небольшой аспект, который называется углом атаки. Эта характеристика имеет самую непосредственную связь со скоростью, которую самолет способен развить
Здесь важно понимать, что в полете практически любое крыло находится под углом по отношению к набегающему на него потоку. Вот этот показатель и зовется углом атаки
Допустим, чтобы лететь с малой скоростью и при этом сохранить подъемную силу, чтобы не упасть, придется увеличить этот угол, то есть задрать нос самолета вверх, как это делается на взлете
Однако тут важно уточнить, что есть критическая отметка, после пересечения которой поток не сможет удерживаться на поверхности конструкции и сорвется с нее. Такое в пилотировании называют отрывом пограничного слоя
Этим слоем называют поток воздуха, который непосредственно соприкасается с крылом самолета и создает при этом аэродинамические силы. С учетом всего этого формируется требование — наличие большой подъемной мощности на малой скорости и поддержание требуемого угла атаки, чтобы лететь на высокой скорости. Именно эти два качества и совмещает в себе механизация крыла самолета.
Необязательные мелочи
В зависимости от направления полета важное значение приобретает день недели и время вылета. Утренние и вечерние рейсы, как правило, – самые загруженные. По статистике, шанс попасть на незагруженный рейс гораздо выше, если лететь с понедельника по четверг, да еще в середине дня
Обозначение мест в рядах салона бывает русским и английским. Например: русское — 1А, 1Б, 1В, 1Г,1Д, 1Е, английское — 1A, 1B, 1C, 1D, 1E, 1F. И в этом случае место 1В (английская «Би») совсем не то, что место 1В (русская «В»). Ведь эти места отличаются: первое у прохода, второе – посередине.
Поэтому легче запомнить так. При любой компоновке салона: место 1А всегда будет у иллюминатора, а 1С – у прохода.
Имеет значение, и в какую сторону лететь. Ведь если солнце светит прямо в глаза, то придется прятаться за шторками иллюминатора
Если это для вас важно и вы хорошо ориентируетесь в сторонах света, то определите, в какую сторону вы совершаете полет. Если с востока на запад, то солнце будет светить слева
Если же с запада на восток, то справа. При полете с севера на юг утром солнце будет слева, а вот вечером – уже справа. Если же с юга на север, то, наоборот.
Ну а если «звезды» все-таки сошлись для вас неудачно, и вам досталось неудачное место, то всегда можно его поменять – если салон не заполнен. Для этого надо обратиться к стюардессам в течение 5 минут после того, как посадка на самолет будет закончена и стюардесса объявит «Boarding is over». Если вы не успеете это сделать, то придется ждать пока самолет не наберет требуемую высоту и пассажирам не разрешат вставать со своих мест.
Удачного вам полета!
Общие сведения
Основные элементы конструкции самолета
Основный элемент конструкции любого самолета – это планер, который в свою очередь состоит из фюзеляжа (основная несущая конструкция, которая соединяет все части самолета в единое целое), крыльев и оперения.
Органы управления самолетом
Основные органы управления размещаются в кабине пилота. Главный орган управления – это штурвал, которые дает возможность управлять самолетом по тангажу и крену. Для поднятия носа самолета, штурвал требуется потянуть на себя. Такое движение принято называть кабрированием. Обратный процесс, когда штурвал отводиться от себя, при этом опускается нос самолета, называется пикированием. Если вращать штурвал вправо или в лево, то самолет так же будет совершать вращательные движения по своей продольной оси в соответствующую сторону. Для вращения самолета вокруг вертикальной оси используются педали. Педали используются в основном при влете и посадке для разбега и пробега по взлетно-посадочной полосе.
На самом штурвале могут располагаться дополнительные переключатели, которые отвечают за включение специальных режимов или радиосвязь.
Еще один важный орган управления самолетом – рычаги управления двигателями (РУДы). Они отвечают за тягу двигателей, а, следовательно, за скорость полета самолета. Для экономии топлива рычаги тяги практически всегда находятся в положении малого газа. Корректировать положение рычагов необходимо на основе показаний приборов на панели, которые отражают параметры полета самолета. На приборной доске довольно много датчиков и панелей, которые отражают большое количество важных для полета показателей.
Управлять тягой самолета можно в ручную, но чаще всего это делается в автоматическом режиме.
ИНТЕРЕСНО: опытный пилот способен посадить самолет в условиях нулевой видимости, ориентируясь только на показания приборов на панели.
Кроме основных органов управления самолетом есть еще и ряд дополнительных, которые могут присутствовать не во всех самолетах:
- Основной пилотажный прибор,
- Навигационный дисплей,
- Панель для выбора режима полета.
Все системы управления самолетом можно поделить на ручные, полуавтоматические, автоматические и комбинированные. Сегодня гражданские самолеты чаще всего имеют комбинированную систему управления, во всех пассажирских лайнерах есть автопилот, которые пожжет вести полет самолета в автоматическом режиме без участия пилотов.
Устройство самолета для чайников. Схема устройства самолета
Бизнес 6 октября 2017
Немногие люди знают, как устроен самолет. Большинство это вообще не интересует. Главное, что он летает, а принцип устройства интересен мало. Но есть люди, которые не могут понять, как такая огромная железная машина поднимается в воздух и мчится на огромной скорости. Попробуем в этом разобраться.
Основные части
Любой современный авиалайнер состоит из следующих частей:
- фюзеляж;
- крылья;
- силовые установки (двигатели);
- оперение;
- взлетно-посадочное устройство;
- системы управления.
Каждая из частей принимает участие в процессе полета лайнера. Кроме этих основных частей, есть еще тысячи разных систем, отвечающих за управление, безопасность, создание нормальных условиях для пассажиров и членов экипажа и т. д.
Основной принцип
В теории нет ничего сложного в устройстве самолета, благодаря которому тот взлетает в воздух. Главный элемент лайнера – это его двигатели, которые обеспечивают большую тягу, позволяющую разогнать машину до огромных скоростей. Именно за счет большой скорости самолет и взлетает.
Итак, два двигателя разгоняют машину на взлетно-посадочной полосе, из-за чего самолет набирает высокую скорость. Затем закрылки на крыльях опускаются вниз.
Они воспринимают большую нагрузку встречного воздуха, из-за чего возникает большая подъемная сила, которая и отрывает лайнер от земли.
То есть, два двигателя разгоняют самолет, закрылки на крыльях позволяют изменить вектор тяги и направить лайнер вверх. Вот так в двух словах можно описать устройство самолета для чайников.
Крылья
Крылья или крыло (часто в самолетах всего одно крыло, которое ошибочно принимают за два) – устройство самолета, которое обеспечивает аэродинамическую устойчивость лайнера и позволяет им управлять. Благодаря крыльям также обеспечивается аэродинамическая подъемная сила.
Принцип их действия основан на третьем законе Ньютона: частицы воздуха сталкиваются с нижней поверхностью крыла, отскакивают вниз, толкая при этом крыло вверх. Вместе с ним вверх направляется сам самолет. Регулировать подъемную силу позволяют закрылки (оперение) крыльев. Угол их поднятия изменяет пилот из кабины.
Шасси
Устройство пассажирского самолета также включает шасси – взлетно-посадочное устройство. По сути, это просто колесная база, которая дает возможность самолету разогнаться при взлете и не развалиться при посадке.
Конечно, шасси – это не просто колеса, а достаточно сложный механизм, который должен принимать на себя колоссальные нагрузки при посадке самолета. Также данный элемент обладает механизмом уборки/открытия.
После взлета убирать шасси необходимо для снижения сопротивления воздуха.
Заключение
Вкратце схема устройства самолета является простой: двигатели толкают самолет, крылья изменяют вектор тяги и создают подъемную силу. В результате машина поднимается в воздух и летит.
Когда необходимо снижаться на посадку, пилот сбавляет обороты двигателя и немного меняет вектор подъемной силы с помощью закрылков и стабилизатора на крыле.
При приближению к земле пилот активирует шасси, и самолет успешно касается покрытия взлетно-посадочной полосы.
Всего в самолете реализуется тысячи систем, каждая из которых просчитана до мелочей, и перечислять их все можно очень долго. К примеру, в судне реализована система сбрасывания кислородных масок, которая автоматически срабатывает при разгерметизации.
Механизмы тушения двигателей в случае пожара, устройства обогрева салона, ориентировки в пространстве и т. д.
Современные лайнеры оснащаются умным программным обеспечением, которое даже может вывести лайнер из так называемого “штопора” – ситуации, при которой частично теряется управление.
Все это разобрать в маленькой статье практически невозможно, но общее устройство самолета теперь, пожалуй, является понятным.
Фюзеляж
А теперь рассмотрим основные конструктивные части лайнера. Начнем с фюзеляжа.
Фюзеляж – это корпус, который состоит из разных частей. В нем размещаются пассажиры, экипаж, здесь есть багажный отсек, куда складываются вещи. Фюзеляж – это достаточно сложная система, которая должна быть прочной и герметичной. Если его обшивка в полете разрушается, то это может привести к человеческим жертвам, поэтому обеспечению герметичности фюзеляжа уделяют много внимания при конструировании судна. Если сильно обобщить, то это герметичная «коробка», где находятся пассажиры, оборудование, груз. Именно эту ее и нужно из точки «А» перегнать в точку «Б».
Системы управления
Рулевые поверхности – важные части самолета, предназначенные для управления воздушным судном. К ним относятся элероны, рули направления и высоты. Управление обеспечивается относительно тех же трех осей в тех же трех плоскостях.
Руль высоты – это подвижная задняя часть стабилизатора. Если стабилизатор состоит из двух консолей, то соответственно есть и два руля высоты, которые отклоняются вниз или вверх, оба синхронно. С его помощью пилот может менять высоту полета летательного аппарата.
Руль направления – это подвижная задняя часть киля. При его отклонены в ту или иную сторону на нем возникает аэродинамическая сила, которая вращает самолет относительно вертикальной оси, проходящей через центр масс, в противоположную сторону от направления отклонения руля. Вращение происходит до тех пор, пока пилот не вернет руль в нейтральное (не отклоненное положение), и ЛА будет осуществлять движение уже в новом направлении.
Элероны (от франц. Aile, крыло) – основные части самолета, представляющие собой подвижные части консолей крыла. Служат для управления самолетом относительно продольной оси (в поперечной плоскости). Так как консолей крыла две, то и элеронов также два. Они работают синхронно, но, в отличие от рулей высоты, отклоняются не в одну сторону, а в разные. Если один элерон отклоняется вверх, то другой вниз. На консоли крыла, где элерон отклонен вверх, подъемная сила уменьшается, а где вниз – увеличивается. И фюзеляж ЛА вращается в сторону поднятого элерона.
Аэродинамика
B-2 Spirit приводится Блэкберном как пример устойчивого самолёта без хвостового оперения.
Хотя модель DC-03 имеет крылья, обладатель рекорда, зарегистрированного в Книге рекордов Гиннесса, Кен Блэкберн (Ken Blackburn) не согласен с решением её создателей добавить на бумажный самолёт хвостовое оперение. Объяснение аэродинамики бумажных самолётов, помещённое на его сайте, доказывает, что хвостовое оперение просто не нужно. Блэкберн использует реальный бомбардировщик B-2 Spirit типа летающее крыло как пример, подтверждающий предположение о том, что вес, распределённый по передней части крыла, делает самолёт более устойчивым.
Независимо от него в 1977 году Эдмонд Xуэй (Edmond Hui) на основе аэродинамики дельтапланов разработал бумажный самолёт, подобный по форме стелс-бомбардировщику, и назвал его Паперанг (Paperang). Единственный из всех бумажных самолётов, он имеет действительно работающие аэродинамические поверхности и длинные узкие крылья, а его конструкция позволяет изменять каждый параметр формы самолёта. В об этом самолёте была выпущена книга «Amazing Paper Airplanes», а в он стал объектом нескольких газетных публикаций. Паперанг невозможно использовать на большинстве соревнований бумажного самолётостроения из-за использования в его конструкции скрепки, но при хорошей устойчивости он обладает исключительно большим коэффициентом относительной дальностью планирования — более 12 (то есть при потере 1 м высоты самолётик пролетает более 12 м по горизонтали).
Хотя считается, что лёгкие бумажные самолётики летают дальше тяжёлых, это утверждение оспаривается Блэкберном. Самолётик Блэкберна, побивший мировой рекорд более 20 лет назад (в ), был разработан в предположении, что наилучшие самолёты обладают короткими крыльями и «тяжелы» в момент фазы запуска, когда человек подбрасывает их в воздух. Хотя более длинные крылья и меньший вес помогли бы, как кажется, самолётику достичь большего времени полёта, но такой бумажный самолёт невозможно выбросить высоко. Согласно Блэкберну, «для достижения максимальной высоты и хорошего перехода к планирующему полёту бросок должен осуществляться с отклонением от вертикали не более 10 градусов» — это показывает, что скорость самолётика, необходимая для успешного броска, должна быть как минимум 100 км/ч.
Как стать пилотом?
Пилот или летчик – это профессия, которой необходимо учиться в летном училище или частных школах. Сегодня получить свидетельство пилота проще в частной школе. Для того, чтобы стать летчиком военного самолета, необходимо быть военнослужащим и пройти соответствующее обучение.
ВАЖНО: пилот с частной лицензией не может управлять самолетами, которые задействованы в коммерческих перевозках. Обучения включает в себя изучение теории, работа на тренажерах, практику на реальных самолетах
Время обучения в летном училище – 5 лет, получение простой частной лицензии, кроме обучения включает в себя 25 часов налета в паре с инструктором и 20 часов собственного пилотирования
Обучения включает в себя изучение теории, работа на тренажерах, практику на реальных самолетах. Время обучения в летном училище – 5 лет, получение простой частной лицензии, кроме обучения включает в себя 25 часов налета в паре с инструктором и 20 часов собственного пилотирования.
Системы бортового оборудования
Все, что обеспечивает жизнь машины в воздухе и правильность ее поведения в полете — управляемость, безопасность, надлежащие условия для пассажиров и экипажа, исправное выполнение специальных функций, для которых, собственно, машина и создавалась, — называют системами бортового оборудования.
Часть бортовой системы электроснабжения самолета: преобразователь тока
В 1970-х годах, когда на воздушные суда начали все шире проникать электронные устройства, для этих систем появился термин «авионика», совместивший в себе понятия «авиация» и «электроника». Оборудование летательных аппаратов подразделяют на собственно авиационное, радиоэлектронное и авиационное вооружение (для военных машин).
К авиационному оборудованию относится, прежде всего, электрика, в том числе системы энергоснабжения, светотехническое оборудование, системы управления силовыми установками (двигателями машины), системы кондиционирования, автоматические противопожарные средства, противообледенительные системы.
Система энергоснабжения обеспечивает электроэнергией все системы и аппараты машины, питаемые от электричества. В нее входят в первую очередь авиационные генераторы, отличающиеся от аналогичных наземных устройств меньшими размерами и весом.
Часть бортовой системы электроснабжения самолета: генератор постоянного тока
Затем — преобразователи тока, изменяющие его род и характеристики при подаче к электрическим аппаратам. Аварийными источниками питания, которые применяются при выходе из строя основных, служат аккумуляторные батареи.
Наконец, сами электрические провода и коробки для их разветвления, а также разного рода реле, включающие и выключающие в нужный момент то или иное электрическое устройство.
Светотехническое оборудование самолета подразделяется на внешнее и внутреннее. Первое устанавливается на крыле, фюзеляже, хвостовом оперении. Оно служит для предотвращения столкновения с другими машинами, освещения взлетно-посадочной полосы, подсветки опознавательных знаков на борту и прочее. На консолях крыла, носу и хвосте находятся аэронавигационные огни, обозначающие габарит машины в темноте.
Части бортовой системы электроснабжения самолета: а — реле; б — распределительная коробка
Внутреннее освещение применяется в самом самолете — в кабине пилотов, пассажирских отсеках. Оно же используется для подсветки приборных досок.
К приборному оборудованию самолета относятся устройства, осуществляющие измерения условий полета: атмосферное давление за бортом и высоту машины над землей, скорость полета и число Маха (то есть отношение скорости самолета к скорости звука), скорость ветра за бортом, температуру воздуха и прочее. Все приборы, контролирующие эти показатели, называют аэрометрическими.
Фара для освещения взлетной полосы, применявшаяся в советских летательных аппаратах. На снимке — в убранном положении
Отдельная приборная система следит за работой силовых установок: проверяет температуру и давление в рабочих камерах двигателей, предупреждает о сбоях в управляющих системах. Специальные пилотажно-навигационные приборы сверяют движение машины с заданным курсом.
К авиационному оборудованию относят и средства объективного контроля, следящие как за оборудованием машины, так и за поведением ее экипажа, причем делающие это независимо от него. Такие средства, называемые черными ящиками, нужны для выяснения причин аварий. В эту же группу входят и всем известные автопилоты — средства, позволяющие вести машину по заданному курсу в автоматическом режиме. Система предупреждения о столкновении «обозревает» пространство вокруг машины, передает сигналы встречным воздушным судам, сообщает о появлении других машин своему пилоту.
Бортовой аэронавигационный огонь самолета
Поделиться ссылкой
Оперение
На фюзеляже размещено оперение, то есть все части, которые обеспечивают устойчивость и управляемость машины в небе. Оперение бывает горизонтальным и вертикальным. Первое придает самолету продольную устойчивость относительно невидимой линии, проведенной через крыло самолета. Оно закрепляется обычно в хвостовой части машины — либо на самом фюзеляже, либо наверху киля. Хотя возможно и расположение оперения в передней части самолета. Такая схема называется уткой.
Американский самолет «Нортроп YB-49» сконструированный по схеме «летающее крыло»: и крыло, и оперение выполнены вместе с фюзеляжем
Горизонтальное оперение состоит из неподвижного стабилизатора — двух плоских «крылышек», размещенных чаще всего в хвостовой части, и шарнирно подвешенного к нему руля высоты.
Вертикальное оперение обеспечивает машине устойчивость и неподвижность в поперечном направлении, то есть относительно ее продольной оси. Иначе говоря, оно необходимо, чтобы самолет не «завалился» в полете на крыло, как это произошло с первой машиной Можайского. Вертикальное оперение шарнирно, то есть подвижно, состоит из киля и подвешенного к нему руля направления, который позволяет изменить направление движения машины в воздухе.
Хвостовое оперение «Боинга 747»:
1 — стабилизатор; 2 — руль высоты; 3 — киль; 4 — руль направления
В полете на оперение действуют те же нагрузки, что и на крыло самолета. Соответственно, и составлено оно из элементов, имеющих формы и профили, как у крыла. Оперение может быть трапециевидным, овальным, стреловидным и треугольным. Существуют схемы вообще без оперения. Они называются «бесхвостка» и «летающее крыло».
Заключение
Вкратце схема устройства самолета является простой: двигатели толкают самолет, крылья изменяют вектор тяги и создают подъемную силу. В результате машина поднимается в воздух и летит. Когда необходимо снижаться на посадку, пилот сбавляет обороты двигателя и немного меняет вектор подъемной силы с помощью закрылков и стабилизатора на крыле. При приближению к земле пилот активирует шасси, и самолет успешно касается покрытия взлетно-посадочной полосы.
Все это звучит очень просто, однако на самом деле техническое устройство самолета намного сложнее. Перед инженерами ставятся задачи высокой сложности, поскольку для того, чтобы безопасно поднять и посадить такую машину, необходимо проведение серьезных расчетов и обеспечение работы всех систем, включая системы безопасности и жизнеобеспечения.
Всего в самолете реализуется тысячи систем, каждая из которых просчитана до мелочей, и перечислять их все можно очень долго. К примеру, в судне реализована система сбрасывания кислородных масок, которая автоматически срабатывает при разгерметизации. Механизмы тушения двигателей в случае пожара, устройства обогрева салона, ориентировки в пространстве и т. д. Современные лайнеры оснащаются умным программным обеспечением, которое даже может вывести лайнер из так называемого «штопора» – ситуации, при которой частично теряется управление.
Все это разобрать в маленькой статье практически невозможно, но общее устройство самолета теперь, пожалуй, является понятным.