Частицы элементарные

Фундаментальные фермионы

Фундаментальные фермионы:

Поколение Кварки с зарядом (+2/3)e Кварки с зарядом (−1/3)e
Название/ аромат кварка/ антикварка Символ кварка/ антикварка Масса (МэВ) Название/ аромат кварка/ антикварка Символ кварка/ антикварка Масса (МэВ)
1 u-кварк (up-кварк) / анти-u-кварк uu¯{\displaystyle u/\,{\overline {u}}} от 1,5 до 3 d-кварк (down-кварк) / анти-d-кварк dd¯{\displaystyle d/\,{\overline {d}}} 4,79±0,07
2 c-кварк (charm-кварк) / анти-c-кварк cc¯{\displaystyle c/\,{\overline {c}}} 1250 ± 90 s-кварк (strange-кварк) / анти-s-кварк ss¯{\displaystyle s/\,{\overline {s}}} 95 ± 25
3 t-кварк (top-кварк) / анти-t-кварк tt¯{\displaystyle t/\,{\overline {t}}} 174 340 ± 790 b-кварк (bottom-кварк) / анти-b-кварк bb¯{\displaystyle b/\,{\overline {b}}} 4200 ± 70

У всех кварков есть также электрический заряд, кратный 1/3 элементарного заряда. В каждом поколении один кварк имеет электрический заряд +2/3 (это u-, c- и t-кварки) и один — заряд −1/3 (d-, s- и b-кварки); у антикварков заряды противоположны по знаку. Кроме сильного и электромагнитного взаимодействия, кварки участвуют в слабом взаимодействии.

Лептоны не участвуют в сильном взаимодействии. Их античастицы — антилептоны (античастица электрона называется позитрон по историческим причинам). Существуют лептоны шести ароматов:

Поколение Заряженный лептон / античастица Нейтрино / антинейтрино
Название Символ Электрический заряд (e) Масса (МэВ) Название Символ Электрический заряд (e) Масса (МэВ)
1 Электрон / Позитрон e−e+{\displaystyle e^{-}\,/\,e^{+}} −1 / +1 0,511 Электронное нейтрино / Электронное антинейтрино νeν¯e{\displaystyle \nu _{e}\,/\,{\overline {\nu }}_{e}} < 0,0000022
2 Мюон μ−μ+{\displaystyle \mu ^{-}\,/\,\mu ^{+}} −1 / +1 105,66 Мюонное нейтрино / Мюонное антинейтрино νμν¯μ{\displaystyle \nu _{\mu }\,/\,{\overline {\nu }}_{\mu }} < 0,17
3 Тау-лептон τ−τ+{\displaystyle \tau ^{-}\,/\,\tau ^{+}} −1 / +1 1776,99 Тау-нейтрино / тау-антинейтрино ντν¯τ{\displaystyle \nu _{\tau }\,/\,{\overline {\nu }}_{\tau }} < 15,5

Невидимый мир.

Во Вселенной имеется не только видимая материя (а также черные дыры и «темная материя», например холодные планеты, которые станут видимыми, если их осветить). Существует и подлинно невидимая материя, пронизывающая всех нас и всю Вселенную ежесекундно. Она представляет собой быстро движущийся газ из частиц одного сорта – электронных нейтрино.

Электронное нейтрино является партнером электрона, но не имеет электрического заряда. Нейтрино несут лишь так называемый слабый заряд. Их масса покоя, по всей вероятности, равна нулю. Но с гравитационным полем они взаимодействуют, поскольку обладают кинетической энергией E, которой соответствует эффективная масса m, согласно формуле Эйнштейна E = mc2, где c – скорость света.

Таблица 1. ФУНДАМЕНТАЛЬНЫЕ ЧАСТИЦЫ
Таблица 1. ФУНДАМЕНТАЛЬНЫЕ ЧАСТИЦЫ
Частица Масса покоя, МэВ/с2 Электрический заряд Цветовой заряд Слабый заряд
КВАРКИ        
u-кварк 350 +2/3 Красный, зеленый, синий +1/2
d-кварк 350 –1/3 Красный, зеленый, синий –1/2
ЛЕПТОНЫ        
Электронное нейтрино +1/2
Электрон 0,511 –1 –1/2

Ключевая роль нейтрино заключается в том, что оно способствует превращению и-кварков в d-кварки, в результате чего протон превращается в нейтрон. Нейтрино играет роль «иглы карбюратора» для звездных термоядерных реакций, в которых четыре протона (ядра водорода) объединяются, образуя ядро гелия. Но поскольку ядро гелия состоит не из четырех протонов, а из двух протонов и двух нейтронов, для такого ядерного синтеза нужно, чтобы два и-кварка превратились в два d-кварка. От интенсивности превращения зависит, насколько быстро будут гореть звезды. А процесс превращения определяется слабыми зарядами и силами слабого взаимодействия между частицами. При этом и-кварк (электрический заряд +2/3, слабый заряд +1/2), взаимодействуя с электроном (электрический заряд 1, слабый заряд –1/2), образует d-кварк (электрический заряд –1/3, слабый заряд –1/2) и электронное нейтрино (электрический заряд 0, слабый заряд +1/2). Цветовые заряды (или просто цвета) двух кварков в этом процессе компенсируются без нейтрино. Роль нейтрино состоит в том, чтобы уносить нескомпенсированный слабый заряд. Поэтому скорость превращения зависит от того, насколько слабы слабые силы. Если бы они были слабее, чем они есть, то звезды вообще не горели бы. Если же они были бы более сильными, то звезды давно бы выгорели.

А что же нейтрино? Поскольку эти частицы крайне слабо взаимодействуют с другим веществом, они почти сразу уходят из звезд, в которых родились. Все звезды сияют, испуская нейтрино, а нейтрино днем и ночью просвечивают наши тела и всю Землю. Так они странствуют по Вселенной, пока не вступят, может быть, в новое взаимодействие (см. также НЕЙТРИННАЯ АСТРОНОМИЯ; ЗВЕЗДЫ).

Другие существующие и гипотетические частицы

  • WIMР’ы («вимпы»; англ. weakly interacting massive particles — слабо взаимодействующие массивные частицы), любые частицы из целого набора частиц, которые могут объяснить природу холодной тёмной материи (такие, как нейтралино или аксион). Эти частицы должны быть достаточно тяжёлыми и не участвовать в сильном и электромагнитном взаимодействиях.
  • WISP’ы (англ. weakly interacting sub-eV particles) — слабо взаимодействующие частицы субэлектронвольтных масс.
  • SIMP’ы (англ. strongly interacting massive particles — сильно взаимодействующие массивные частицы).
  • Реджеон — объект, возникающий в теории Редже и описываемый отдельными траекториями Редже (название реджеон введено В. Н. Грибовым).
  • Померон — используется для объяснения квазиупругого рассеяния адронов и расположения полюсов Редже в теории Редже, частный случай реджеона.
  • Оддерон — реджеон, обладающий всеми квантовыми числами померона за исключением отрицательной C-чётности.
  • Скирмион — топологическое решение пионного поля, используется для моделирования низкоэнергетических свойств нуклонов, таких, как связь аксиально-векторного тока и массы.
  • Голдстоуновский бозон — безмассовое возбуждение поля, которое было подвергнуто спонтанному нарушению симметрии. Пионы являются квази-голдстоуновскими бозонами (квази-, потому что они имеют ненулевую массу) нарушенной хиральной изоспиновой симметрии квантовой хромодинамики.
  • Голдстино (англ.) (или голдстоуновский фермион) — фермион, возникающий при спонтанном нарушении суперсимметрии.
  • Духи Фаддеева — Попова — фиктивные поля и соответствующие им частицы, вводимые в теории калибровочных полей для того, чтобы сокращались вклады от нефизических времениподобных и продольных состояний калибровочных бозонов.
  • Инстантон — полевая конфигурация, которая является локальным минимумом Евклидова действия. Инстантоны используются в непертурбативных расчётах туннельных уровней.
  • Антигравитон — гипотетическая частица со спином 1
  • Дион — гипотетическая частица, обладающая одновременно электрическим и магнитным зарядами.
  • Геон (кугельблиц) — электромагнитная или гравитационная волна, которая удерживается в ограниченной области гравитационным притяжением энергии своего собственного поля.
  • Oh-My-God (англ. — боже мой) частица — ультравысокоэнергетические космические лучи (возможно, протоны), которые имеют энергию выше предела Грейзена — Зацепина — Кузьмина, представляющего собой теоретически максимально возможную энергию космических лучей.
  • Спурион — имя, данное «частице», введённой математически в распад с нарушением закона сохранения изоспина, чтобы анализировать его как процесс с сохранением изоспина.
  • Акселерон — гипотетическая субатомная частица, введенная для объяснения природы темной энергии.
  • Максимон (планкеон) — гипотетическая частица, масса которой равна планковской массе — предположительно максимально возможной массе в спектре масс элементарных частиц.
  • Минимон — гипотетическая частица с минимально возможной массой (в противоположность максимону), не равной 0.
  • Энион — обобщение понятий фермиона и бозона, существующая в двухмерных системах.
  • Плектон — теоретический тип частиц, аналогичных эниону при размерности более двух.
  • Фридмон — гипотетическая элементарная частица, масса и размеры которой ничтожно малы.
  • Магнитный монополь — гипотетическая частица, элементарный магнитный заряд.
  • X(4140) (Y(4140)) — ранее не предсказанная Стандартной моделью частица. Впервые наблюдалась в Фермилабе и об её открытии было объявлено 17 марта 2009 года.
  • Сфалерон
  • Космион
  • Мерон (полуинстантон)
  • Хопфион — солитонная конфигурация модели Фаддеева — Скирма
  • Липатон
  • Геликон — низкочастотная электромагнитная волна, которая возникает в некомпенсированной плазме, находящейся во внешнем постоянном магнитном поле.
  • Парафотон — гипотетическая элементарная частица, не взаимодействующая с материей и способная путём осцилляций превращаться в обычный фотон и обратно.
  • f1(1285) — псевдовекторная частица
  • X17 — гипотетическая частица (бозон), предложенная для объяснения аномальных результатов измерений в ходе поиска тёмных фотонов
  • Хамелеон — гипотетическая частица, скалярный бозон с нелинейным самодействием, которое делает эффективную массу частицы зависящей от окружения

Концепция взаимодействия в ФЭЧ

Взаимодействие частиц в ФЭЧ принципиально отличается от взаимодействия объектов в других областях физики. Классическая механика изучает движение тел, которые, в принципе, могут друг с другом взаимодействовать. Однако механизмы этого взаимодействия в классической механике не уточняются

В противоположность этому, ФЭЧ уделяет одинаковое внимание как самим частицам, так и процессу их взаимодействия. Связано это с тем, что в ФЭЧ удаётся описать электромагнитное, сильное и слабое взаимодействие как обмен виртуальными частицами

Важным постулатом в таком описании явилось требование симметрии нашего мира относительно калибровочных преобразований.

Равноправие частиц и их взаимодействий красивым образом проявляется в суперсимметричных теориях, в которых постулируется существование в нашем мире ещё одной скрытой симметрии: суперсимметрии. Можно сказать, что при преобразовании суперсимметрии частицы превращаются во взаимодействия, а взаимодействия — в частицы.

Уже отсюда видна исключительная фундаментальность ФЭЧ — в ней делается попытка понять многие свойства нашего мира, которые до этого (в других разделах физики) принимались лишь как данность.

Размеры элементарных частиц

Основная статья: Размер элементарной частицы

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10−15 м, что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц — калибровочных бозонов, кварков и лептонов — в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10−18 м) (). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно может оказаться планковской длиной, равной 1,6·10−35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет, представляющий частицу как суперпозицию точно локализованных квантовых состояний, всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими — например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц — фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов, которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны, которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов, ~3×10−18 м, а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10−15 м), выступающего здесь как переносчик взаимодействия.

Теоретическая ФЭЧ

Теоретическая ФЭЧ строит теоретические модели для объяснения данных, полученных в действующих экспериментах, получения предсказаний для будущих экспериментов и разработки математического инструментария для проведения исследований такого рода. На сегодняшний день основным орудием в теоретической физике элементарных частиц является квантовая теория поля. В рамках этой теоретической схемы любая элементарная частица рассматривается как квант возбуждения определённого квантового поля. Для каждого типа частиц вводится собственное поле. Квантовые поля взаимодействуют, в этом случае их кванты могут превращаться друг в друга.

На сегодняшний день основным инструментом создания новых моделей в ФЭЧ является построение новых лагранжианов. Лагранжиан состоит из динамической части, которая описывает динамику свободного квантового поля (не взаимодействующего с другими полями), и частью, описывающей либо самодействие поля, либо взаимодействие с другими полями. Если полный лагранжиан динамической системы известен, то, согласно лагранжеву формализму КТП, можно выписать уравнения движения (эволюции) системы полей и пытаться решить эту систему.

Главным результатом современной теоретической ФЭЧ является построение Стандартной модели физики элементарных частиц. Данная модель базируется на идее калибровочных взаимодействий полей и механизме спонтанного нарушения калибровочной симметрии (механизм Хиггса). За последние пару десятков лет её предсказания были многократно перепроверены в экспериментах, и в настоящее время она — единственная физическая теория, адекватно описывающая устройство нашего мира вплоть до расстояний порядка 10−18 м. Всего модель описывает 61 частицу.

Перед физиками, работающими в области теоретической ФЭЧ, стоят две основные задачи: создание новых моделей для описания экспериментов и доведение предсказаний этих моделей (в том числе и Стандартной модели) до экспериментально проверяемых величин. Второй задачей занимается феноменология элементарных частиц.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector