10 важных причин освоения космоса

У первого малазийского астронавта на борту МКС возникли проблемы с молитвой

Первый малазийский астронавт.

Первым малазийским астронавтом стал Шейх Музафар Шукор. 10 октября 2007 года он отправился в девятидневный полет на МКС. Однако перед его полетом он и его страна столкнулись с необычной проблемой. Шукор – мусульманин. Это значит, что ему необходимо молиться 5 раз в день, как того требует Ислам. Кроме того, вышло так, что полет проходил во время месяца Рамадан, когда мусульмане должны поститься.

Помните, мы говорили о том, что на МКС астронавты встречают восход и закат каждые 90 минут? Это оказалось большой проблемой для Шокура, поскольку ему в этом случае было бы сложно определить время молитвы – в Исламе оно определяется расположением Солнца в небе. Кроме того, при молитве мусульмане должны повернуться в сторону Каабы в Мекке. На МКС направление к Каабе и Мекке будет меняться каждую секунду. Таким образом во время молитвы Шукор мог находиться сначала в направлении Каабы, а затем параллельно ей.

Малазийское космическое агентство Angkasa собрало 150 исламских священнослужителей и ученых для того, чтобы найти решение этой проблеме. В итоге собрание пришло к выводу, что Шокуру следует начинать свою молитву повернувшись в сторону Каабы, а затем игнорировать любые изменения. Если определить положение Каабы ему не удается, то он может смотреть в любую сторону, где она, по его мнению, может находиться. Если и это вызовет затруднения, то он может просто повернуться в сторону Земли и делать все то, что считает нужным.

Кроме того, ученые и священнослужители согласились с тем, что нет необходимости в том, чтобы Шокур преклонял колени во время молитвы, если это сложно сделать в невесомости на борту МКС. Так же нет необходимости проводить омовение водой. Ему разрешили просто вытереть свое тело мокрым полотенцем. Ему также позволили сократить количество молитв – с пяти до трех. Так же решили, что Шокуру не нужно поститься, поскольку в Исламе путешественники освобождены от поста.

Как спят астронавты?

Закрытое пространство, психические и эмоциональные нагрузки, магнитные бури — все это сильно подрывает состояние здоровья отважных покорителей космического пространства. Для того, чтобы снизить негативные последствия, вызванные долговременным нахождением на орбите Земли, астронавты должны спать через каждые несколько восходов Солнца во время импровизированных «ночей”. На практике это означает, что во время вращения Международной космической станции вокруг Земли, астронавты наблюдают восходы и закаты каждые 1,5 часа, что заставляет их ложиться спать через каждые несколько рассветов для достижения одного более-менее полноценного ”ночного» отдыха.

Кроме того, для того, чтобы случайно не “уплыть” во время сна со своих кроватей, исследователям приходится застегиваться в спальные мешки, а затем пристегиваться специальными ремнями. Они также используют маски для глаз, чтобы блокировать любой свет и стараются придерживаться установленного графика сна для скорейшей адаптации к новым условиям.

Космические полеты следующего поколения

Эта потребность в скорости воздвигнет новые препятствия на пути космических путешественников.

Новые корабли НАСА, которые угрожают побить рекорд скорости «Аполлона 10», по-прежнему будут полагаться на испытанные временем химические системы ракетных двигателей, используемые со времен первых космических полетов. Но эти системы обладают жесткими ограничениями скорости по причине высвобождения малых величин энергии на единицу топлива.

Поэтому, чтобы существенно увеличить скорость полета для людей, отправляющихся на Марс и далее, необходимы, как признают ученые, совершенно новые подходы.

«Те системы, которыми мы располагаем сегодня, вполне в состоянии доставить нас туда, — говорит Брей, — однако все мы хотели бы стать свидетелями революции в двигателях».

Эрик Дэвис, ведущий физик-исследователь в Институте перспективных исследований в Остине, штат Техас, и участник программы НАСА по прорывным разработкам в физике движения, шестилетнего исследовательского проекта, завершившегося в 2002 году, выделил три наиболее перспективных средства, с точки зрения традиционной физики, способных помочь человечеству достичь скоростей, разумно достаточных для межпланетных путешествий.

Если коротко, речь идет о явлениях выделения энергии при расщеплении вещества, термоядерном синтезе и аннигиляции антиматерии.

Первый метод заключается в делении атомов и применяется в коммерческих ядерных реакторах.

Второй, термоядерный синтез, заключается в создании более тяжелых атомов из простых атомов – такого рода реакции питают энергией Солнце. Это технология, которая завораживает, но не дается в руки; до ее обретения «всегда остается еще 50 лет» — и так будет всегда, как гласит старый девиз этой отрасли.

«Это весьма передовые технологии, — говорит Дэвис, — но они основаны на традиционной физике и прочно утвердились еще на заре Атомного века». По оптимистическим оценкам, двигательные системы, основанные на концепциях деления атомов и термоядерном синтезе, в теории, способны разогнать корабль до 10% скорости света, т.е. до весьма достойных 100 миллионов км/час.

Image caption

Летать со сверхзвуковой скоростью — уже не проблема для человека. Другое дело — скорость света, или хотя бы близко к ней…

Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля — это антиматерия, двойник и антипод обычной материи.

Когда два вида материи приходят в соприкосновение, они уничтожают друг друга, в результате чего выделяется чистая энергия.

Технологии, позволяющие вырабатывать и хранить – пока крайне незначительные – количества антиматерии, существуют уже сегодня.

В то же время производство антивещества в полезных количествах потребует новых специальных мощностей следующего поколения, а инженерной мысли придется вступить в конкурентную гонку по созданию соответствующего космического корабля.

Но, как говорит Дэвис, немало отличных идей уже прорабатывается на чертежных досках.

Космические корабли, приводимые в движение энергией антиматерии, смогут перемещаться с ускорением в течение нескольких месяцев и даже лет и достигать более существенных процентов от скорости света.

При этом перегрузки на борту будут оставаться приемлемыми для обитателей кораблей.

Вместе с тем, такие фантастические новые скорости будут таить в себе и иные опасности для организма человека.

Китайским тайкунавтам закрыт доступ на МКС

Китайцев нет на МКС

Китайским тайкунавтам запрещается посещать Международную космическую станцию из-за наложенных на Китай санкций со стороны США. В 2011 году американский Конгресс запретил любое сотрудничество по космическим программам между США и Китаем.

Запрет был вызван опасениями того, что китайская космическая программа негласно ведется в милитаристских целях. США в свою очередь не хочет никаким образом помогать китайским военным и инженерам, поэтому МКС для Китая находится под запретом.

По мнению издания Time, это очень неразумное решение вопроса. Американскому правительству необходимо понять, что запрет на использование МКС Китаем, а также запрет на любое сотрудничество между США и Китаем по вопросам развития космических программ не остановят последнего от развития своей собственной космической программы. Китай уже отправлял своих тайкунавтов в космос, а также роботов на Луну. Кроме того, Поднебесная планирует строить новую космическую станцию, а также отправить свой ровер на Марс.

Защита от разрушительного астероида


Если мы не хотим однажды встретить судьбу динозавров, нам нужно защитить себя от угрозы попадания большого астероида. По данным NASA, примерно раз в 10 000 лет каменный или железный астероид размером с футбольное поле может врезаться в поверхность нашей планеты и вызвать цунами, возможно, достаточно большие, чтобы затопить прибрежные районы. Но на деле бояться нужно настоящих монстров — астероидов в 100 метров в поперечнике или больше. Столкновение с таким гигантом вызовет огненный шторм из нагретых осколков и заполнит атмосферу пылью, блокирующей свет солнца, что уничтожит наши леса и поля. Если кто и выживет, он будет серьезно голодать. Мудро финансируемая космическая программа позволила бы нам обнаружить опасный объект задолго до того, как он поразит Землю, и отправить космический аппарат, который смог бы с помощью направленного взрыва направить астероид на другой курс.

Сколько летели до Марса?

Несмотря на то, что на Марс не ступала нога человека, ученные давно заинтересовались планетой и с 1964 года стали отправлять различные устройства и аппараты для более детального изучения Красной планеты.

Первая миссия по изучению Марса была осуществлена в 1964 году, когда США отправили аппарат под названием Mariner-4 к орбите далекой планеты. Аппарат летел 228 дней. Он предоставил ученым 21 фотографию.

Mariner-6 был отправлен к Марсу в 1969 году. Полет к орбите Красной планеты длился 155 дней. В результате этой миссии ученые получили данные об атмосфере и температуре на поверхности.

Mariner-7 был отправлен в том же году, выступая как запасной вариант. Путь его занял 128 дней.

Mariner-9 был отправлен в 1971 году, добрался до Марса он за 168 дней. Этот аппарат стал первым искусственным спутником планеты, за свое недолгое существование (до октября 1972 года) он успел создать карту поверхности Марса.

Viking-1 стал первым аппаратом, чьей миссией была посадка на поверхность. Добирался он 304 дня.

Миссии на Марс

Viking-2 добирался 333 дня и главной задачей было — поиск жизни. С помощью аппарата было сделано более 16 тысяч снимков. Фотографии были цветными, что дало абсолютно новый взгляд на Марс.

Mars Pathfinder, запущенный в 1996 году, достиг Красной планеты за 183 дня. Аппарат изучал местный грунт.

Mars Express — космическая станция Европейского космического агенства. Она находилась в пути 201 день.

Mars Reconnaissance Orbiter — первый разведчик, отправленный в 2005 году с целью найти место, где могли бы высадиться первые колонисты. Путь занял 210 дней.

Аппарат Maven, отправленный в 2013 году, занимался изучением атмосферы планеты и добирался до нее 307 дней.

Советскому Союзу не везло с изучением Марса, было много неудачных пусков и поломок в процессе полета. С Венерой получалось гораздо успешнее. Приведем данные: советский аппарат Марс-1 летел до Марса 230 дней.

Такая значительная разница в длительности полетов появляется из-за разного расположения двух планет. А техническое развитие не может серьезно повлиять на время пути — в большей части длительность зависит от сложных математических вычислений, заключающихся в анализе орбит двух небесных тел.

Космос раскрывает свои тайны

Тезисы по теме освоения космического пространства сильно расходятся, в зависимости от характера подаваемой информации. Безусловно, происходит этот процесс постепенно. На самом деле, каждый этап, просто звучащий на словах, подразумевает годы кропотливой работы. Более того, это десятки миллиардов вложенных средств. С этой целью, в ход идёт всё, начиная от новейших материалов, заканчивая теориями и догадками. Пожалуй, профессия космонавтов является одной из наиболее рискованных в мире.

Несомненно, освоение космоса на фото восхищает и впечатляет. Но это делают лишь наиболее отважные люди, обладающие мощным запасом здоровья, способностью принимать сложные решения в экстренных ситуациях. К тому же, благодаря орбитальным телескопам, МКС и множеству других проектов, было получено множество систематизированных данных. Именно они составляют базу знаний человечества об этом неизведанном месте. В конце концов, даже у солидных ученых больше вопросов, чем ответов. Несмотря на то, что они занимаются раскрытием тайн. А освоение космоса, как глобальная проблема, рассматривается многими странами. Между тем, они не имеют даже собственных космодромов.

Зачем нужны полеты в космос?

Люди во все времена пытались узнать, что находится за пределами нашей планеты. А с момента запуска первого спутника началась эра освоения космоса и человечество получило новые мощные инструменты познания — исследовательские космические аппараты. Развитые страны ежегодно тратят огромные средства на создание ракет-носителей, космических кораблей и специальной аппаратуры, космических роботов-разведчиков. Астронавты и космонавты рискуют жизнью, целые армии ученых и инженеров разрабатывают космические программы, конструируют и строят спутники и лаборатории, предназначенные для работы за пределами Земли.

С помощью космического телескопа «Хаббл» были получены уникальные снимки кометно-астероидной бомбардировки района южного полюса Юпитера, во время которой в облачном покрове планеты-гиганта возникли «прорехи» размером с Тихий океан

И все-таки — зачем? Какой прок рядовому жителю Земли от того, что где-то там, на ближних и дальних орбитах годами носятся сложные и дорогостоящие устройства?

Дом человечества — планета Земля. Но она является неотъемлемой частью неизмеримо большего дома — Вселенной. Цель многих исследований, проводимых в космическом пространстве — узнать о том, как устроен этот «самый большой дом», почему и как в нем работают «освещение» и «отопление», откуда берется энергия, каковы свойства вещества, из которого он построен. Эти знания со временем откроют человечеству новые неисчерпаемые источники энергии, дадут ему власть над климатом, помогут управлять атмосферными процессами и избавят от опасностей, грозящих Земле из таинственных глубин Вселенной.

Международная космическая станция (МКС) на околоземной орбите

За последние два года с помощью автоматических станций, запущенных США, Японией, Китаем и Индией, было доказано наличие воды на Луне

Важность этого результата трудно переоценить — ведь до сих пор главным препятствием для создания постоянной базы землян на нашем спутнике является отсутствие воды. А она необходима не только для питья и бытовых нужд — разложив воду на составляющие можно получить кислород для дыхания и водород, то есть, ракетное топливо

Так выглядят марсоходы-близнецы «Спирит» и «Оппортьюнити». За все время исследований Красной планеты с помощью космических аппаратов здесь побывали три марсохода, причем два из них продолжают работу и сегодня, собирая ценнейшую информацию. Управление этими подвижными лабораториями осуществляется с Земли

На Марсе продолжали свою работу американские марсоходы-геологи «Спирит» и «Оппортьюнити». В 2009 г. они впервые обнаружили там значительные количества метана и водяного льда в средних широтах. В системе Сатурна космический зонд «Кассини» обнаружил озера из жидких углеводородов на Титане — одном из спутников гигантской планеты. Американский зонд «Мессенджер» трижды в течение года пролетал над поверхностью Меркурия, а при последнем пролете сделал с близкого расстояния снимки областей, которых не видел еще ни один исследователь. А тем временем самый быстрый за всю историю космических полетов зонд «Новые Горизонты», движущийся к орбите Плутона со скоростью свыше 16 км/с, преодолел половину пути, который продлится в общей сложности восемь лет.

14 декабря 2009 г. на околоземную орбиту был запущен инфракрасный космический телескоп WISE, предназначенный для обзора всего неба. С новым телескопом ученые связывают большие надежды. Он предназначен для исследования недоступных ранее объектов Солнечной системы и удаленных слабых галактик.

Космический зонд «Кассини»

Оно помогло бы ответить на большой вопрос

Однако все попытки найти в небе признаки других существ оказывались бесплодными. Возможно, потому что земная атмосфера мешает сообщениям доходить до нас. Вот почему те, кто занимается поиском внеземных цивилизаций, готовы разворачивать еще больше орбитальных обсерваторий вроде космического телескопа Джеймса Уэбба. Этот спутник будет запущен в 2018 году и сможет искать химические признаки жизни в атмосферах далеких планет за пределами нашей Солнечной системы. Это только начало. Возможно, дополнительные космические усилия помогут нам, наконец, ответить на вопрос, одиноки ли мы.

Траектория полета

Станция движется вокруг планеты по определенной траектории. Существуют специальная карта, которая показывает, какой участок пути корабль проходит в данный момент времени. Также на этой карте показаны разные параметры — время, скорость, высота, широта и долгота.

Возьмите на заметку: посмотреть, где сейчас МКС, можно здесь http://spacegid.com/media/iss_tracker/.

Почему МКС не падает на Землю? На самом деле объект падает на Землю, но промахивается, так как постоянно двигается с определенной скоростью. Требуется регулярно поднимать траекторию. Как только станция теряет часть скорости, она приближается всё ближе к Земле.

«Вам что, средств не хватает?»

Самой логичной версией того, почему таких полётов сейчас нет, является финансовая. Один полёт «Сатурна-5» в 1969 году стоил 185 миллионов долларов, то есть примерно 1,2 миллиарда сегодняшних долларов. Около 10 тысяч за килограмм нагрузки — это явно недёшево. Однако и с этой версией возникают неудобные вопросы. 

Лунная программа стоила дорого (более 170 миллиардов долларов в ценах 2016 года), но программа шаттлов стоила даже дороже (230 миллиардов). Если верить NASA, один полёт шаттла стоил 500 миллионов долларов. По данным независимых наблюдателей в тех же США — 1,65 миллиарда. Допустим, что эти наблюдатели — агенты Кремля, а верную цифру дало только агентство. Тогда получается, что шаттл, запускавший 24,4 тонны, стоил 0,5 миллиарда за пуск, а «Сатурн-5» — 1,2 миллиарда, но в космос выводил в пять раз больше груза. В самом лучшем для шаттлов случае они выводили в космос полезную нагрузку дороже «Сатурнов»! При этом «челноки» занимались, откровенно говоря, непонятно чем. Трудно сравнивать научные результаты, полученные от их полётов к МКС и на низкую околоземную орбиту, с результатами исследований Луны и вывозом оттуда нескольких центнеров грунта. Если «Сатурны» были дороги, то зачем было обращаться к ещё более дорогим и при этом радикально менее результативным шаттлам? 

Можно предположить, что после свёртывания полётов на Луну «Сатурны» стали не нужны. Ракета, выводящая на орбиту больше 100 тонн, — слишком мощная штука, чтобы с её помощью запускать спутники. Загрузить её малыми аппаратами не удастся — таких потребностей по их запуску в постаполлоновскую эру просто не существовало. Шаттлы поднимают впятеро меньше и для низкоорбитальной космонавтики смотрятся куда уместнее. Но и это объяснение неудовлетворительно. С точки зрения освоения и изучения космоса все задачи, выполненные шаттлами, смотрятся слабее задач, выполненных «Сатурнами».

Почему же выбор был сделан в пользу «челноков»? Когда полёты на Луну сворачивали, конгрессмены и политики США хотели снизить затраты на космос. NASA пыталось, несмотря на это, сохранить значительное финансирование. Поэтому перед слабо разбирающимися в чём-либо конкретном политиками была нарисована радужная картина того, как при массовых пусках многоразовых шаттлов удельная стоимость вывода на килограмм груза сократится и все станёт хорошо. Программа шаттлов позиционировалась как экономящая средства, иначе на неё никто не дал бы денег. Однако при её планировании была допущена серия ошибок. Базовой причиной всех их была экономия средств, которую выставляли сильной стороной «челноков» в сравнении с дорогим «Сатурном». В результате шаттлы получились такими, какими их сделали: дешёвыми в разработке (6,75 миллиарда долларов), но дорогими в полёте (18 тысяч долларов за килограмм груза против запланированных 674). Всё это напоминает классическую историю постройки Пентагоном БМП «Брэдли» (смотрите на видео ниже):

Мнение, что, отказавшись от дальнего космоса, можно сэкономить, является естественным следствием того, что носители такого мнения — политики, то есть люди, которые в техническом плане не слишком компетентны. Вопрос не стоит как «летать к Луне дорого или не летать к ней дёшево». В действительности космос всё равно будет стоить дорого. Просто в одном случае космонавтов, как сегодня, будут дорого возить на МКС в 400 километрах от Земли. В другом случае их будут возить пореже (раз в год, например), но на Луну, в 400 тысячах километров от Земли.

Итак, правильным ответом на вопрос «Почему мы не летаем на Луну?» будет известная фраза из советской классики: «Средства у нас есть. У нас ума не хватает». Истинная причина отказа от полётов на Луну — в неспособности NASA рассчитать, что отказ от «Сатурнов» сделает полёты в дальний космос невозможными, а в ближний — невозможно дорогими. Удержать США от этой ошибки мог бы только СССР — если бы захотел довести до ума свою лунную ракету или даже, как планировал Королёв, полетев на Марс. Перед лицом советских полётов в дальний космос отказаться от «Сатурнов» американцы не смогли бы. Как известно, Москва ничего из этого не захотела. Её нежелание вкупе с серией феерических ошибок агентства похоронило «лунные технологии» на долгие десятилетия. 

2018

США могут заказать у РФ корабль для доставки астронавтов на МКС

США намерены заказать в России изготовление космического корабля «Союз» для доставки своих астронавтов на Международную космическую станцию в 2020 году в связи с задержкой в изготовлении американских коммерческих космических кораблей, сообщил РИА Новости источник в ракетно-космической отрасли.

По его словам, контракт планируется заключить между корпорацией Boeing и РКК «Энергия». Аналогичный договор был заключен на доставку американских астронавтов в 2018 и первой половине 2019 года.

Собеседник РИА Новости уточнил, что для заключения контракта потребуется разрешение от американских законодателей, которые могут выступить с критикой зависимости NASA от России.

Проблемы могут возникнуть и с российской стороны. Ранее СМИ сообщали, что тогдашний вице-премьер Дмитрий Рогозин в апреле потребовал, в частности, от ракетно-космической отрасли согласовывать с ним заключение всех контрактов со странами, наложившими на Россию санкции.

После закрытия проекта Space Shuttle в 2011 году США потеряли независимый доступ в космос. Полеты американских астронавтов на Международную космическую станцию с тех пор осуществляются только на российских кораблях «Союз».

NASA: санкции помешают США доставлять грузы на МКС

США через 2 года не смогут доставлять свои грузы на МКС из-за санкций, запрещающих совместную коммерческую деятельность с компаниями «Роскосмоса», сообщается в отчете генерального инспектора NASA Пола Мартина.

Сейчас американские грузы доставляется на МКС при помощи российских двигателей РД-181, которые используются в самой важной части полета – в первой ступени ракеты-носителя.

В момент введения санкций США и при Бараке Обаме, и при Дональде Трампе конгресс утверждал поправку, которая разрешает США до 2020 г. покупать российские ракетные двигатели.

РД-181 производства российского АО «НПО Энергомаш» используются в американских ракетах-носителях Antares 230 компании Orbital ATK.

В отчете управления генерального инспектора NASA подчеркивается, что разработки США по созданию замены РД-181 далеки от практической реализации. США постепенно отказываются от услуг «Роскосмоса».

SpaceX начала поставки грузов на МКС в 2012 г., а Orbital ATK — в 2014 г.

В январе 2016 г. NASA выбрало три компании США — Orbital ATK, SpaceX и Sierra Nevada — для второго раунда контрактов на поставку грузов к МКС до 2024 г.

В декабре 2015 г. США заказали у России 20 ракетных двигателей РД-180 производства российского АО «НПО Энергомаш» для ракет-носителей семейства Atlas. В 2016 г. корпорация Orbital Sciences Corporation (США) приняла решение о реализации опциона на закупку еще 8 двигателей РД-181, сообщали ранее «Вести. Экономика».

Запуск робота IBM

28 февраля 2018 года стало известно, что компании Airbus и IBM объединили усилия по разработке интерактивного помощника CIMON (Crew Interactive MObile CompanioN) — подвижного робота размером с набивной мяч, оснащенного технологией искусственного интеллекта (ИИ) Watson.

Издание Newsweek отмечает, что CIMON станет первым «летающим компьютером» в космосе, когда робот будет доставлен на Международную космическую станцию (МКС) для работы с космонавтами. Робот весит примерно пять килограмм и сделан из металла и пластика посредством 3D-печати. Подробнее здесь.

Факты об МКС

За время своей работы станция вызывала немало восхищений. Этот аппарат является величайшим достижением человеческих умов. По своей конструкции, назначению и особенностям его можно назвать совершенством. Конечно, может быть, лет через 100 на Земле начнут строить космические корабли другого плана, но пока что, на сегодняшний день, этот аппарат – достояние человечества. Об этом свидетельствуют следующие факты об МКС:

  1. За время своего ее существования на МКС космонавтов побывало около двухсот. Также здесь были туристы, которые просто прилетели посмотреть на Вселенную с орбитальной высоты.
  2. Станцию видно с Земли невооруженным глазом. Эта конструкция является самой большой среди искусственных спутников, и ее легко можно увидеть с поверхности планеты без какого-то увеличивающего устройства. Есть карты, на которых можно посмотреть, в какое время и когда аппарат пролетает над городами. По ним легко отыскать сведения о своем населенном пункте: увидеть расписание полета над регионом.
  3. Для сборки станции и поддержания ее в рабочем состоянии космонавты вышли более 150 раз в открытый космос, проведя там около тысячи часов.
  4. Управляется аппарат шестью астронавтами. Система жизнеобеспечения обеспечивает непрерывное присутствие на станции людей с момента ее первого запуска.
  5. Международная космическая станция – это уникальное место, где проводятся самые разные лабораторные эксперименты. Ученые делают уникальные открытия в области медицины, биологии, химии и физики, физиологии и метеонаблюдений, а также в других областях науки.
  6. На аппарате используются гигантские солнечные батареи, размер которых достигает площади территории футбольного поля с его конечными зонами. Их вес — почти триста тысяч килограмм.
  7. Батареи способны полностью обеспечивать работу станции. За их работой тщательно следят.
  8. На станции есть мини-дом, оснащенный двумя ванными и спортзалом.
  9. За полетом следят с Земли. Для контроля разработаны программы, состоящие из миллионов строк кода.

Изучение собственно Земли

Первой областью является изучение собственно Земли: фотографирование ее поверхности, достижение достаточно большого расстояния от наблюдаемого объекта, точное определение физических свойств нашей планеты.

Зачем изучать планету именно с космоса

Основным свойством материи является притяжение, которое вызывает падение тел на поверхность Земли и то, что тела, получившие определенную скорость, кружатся вокруг нее по орбите. Определенная скорость ракеты в космосе км/ч позволяет находиться на орбите планеты.

Поскольку движение спутников по круговой или эллиптической орбите вокруг Земли находится под влиянием силы тяжести, мы можем на основании траектории их движения доказать, что Земля обладает в разных местах разным притяжением.

Таким образом, наша планета представляет собой неоднородное, разнообразное тело. В некоторых местах оно тяжелее, в других – легче, а это означает, что в нем есть свои гравитационные горбы и гравитационные котловины. Это значит, что один и тот же предмет в одном месте будет падать быстрее, а в другом медленнее. Именно эти отличия можно легко и очень точно измерять при изучении траектории полета спутника вокруг Земли (или вокруг другого планетарного тела). Таков смысл исследований которые помогло провести именно изучение космоса.

Подобные гравитационные возвышения и углубления, то есть разница в величине гравитационного ускорения, были обнаружены не только на Земле, но также на Луне и на других планетах.

Измерение силы притяжения нашей планеты и ускорения силы тяжести представляет один из самых эффективных методов поисков месторождений минерального сырья.

  • В качестве примера можно привести поиски нефти. Нефтеносные горные породы обладают сравнительно малой плотностью и меньшим притяжением, поэтому они могут быть открыты как места с меньшей силой тяжести.
  • С другой стороны, горные породы, содержащие сульфиды тяжелых металлов, например, железа, никеля и меди, обладают более высокой плотностью, а, следовательно, и большей силой притяжения и на карте будут обозначены как значительная гравитационная аномалия.

Нам нужно колонизировать космос, чтобы выжить


Наша способность выводить спутники в космос помогает нам наблюдать и бороться с насущными проблемами на Земле, от лесных пожаров и разливов нефти до истощения водоносных горизонтов, которые нужны людям для снабжения питьевой водой. Но наш рост населения, жадность и легкомыслие приводят к серьезным экологическим последствиям и повреждениям нашей планеты. Оценки 2012 года говорили о том, что Земля сможет выдержать от 8 до 16 миллиардов человек — а ее население уже перешагнуло отметку в 7 миллиардов. Возможно, нам нужно быть готовыми к колонизации другой планеты, и чем быстрее, тем лучше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector