12 самых важных и значительных изобретений человека

Альтернативное микробное топливо

В дополнение к низкой потребности в энергии, крошечные микробы могут эффективно синтезировать это электротопливо в лаборатории. Электротопливные микробы были выделены и обнаружены в нефотосинтезирующих бактериях. Они используют электроны в почве в виде пищи и поедают энергию для производства бутанола, взаимодействуя с электричеством и углекислым газом. Используя эту информацию и проведя некоторые манипуляции с генами, ученые включили данный вид микробов в выращенные в лаборатории культуры бактерий, позволив им производить бутанол в огромных количествах. Бутанол сейчас выглядит лучшей альтернативой как этанолу, так и бензину по множеству причин. Будучи более крупной молекулой, бутанол обладает большими возможностями для хранения энергии, нежели этанол, и не абсорбирует воду, поэтому вполне может находиться в газовых баках любого автомобиля и передаваться через бензиновые трубопроводы. Бутаноловые микробы стали многообещающим маяком эпохи альтернативных видов топлива.

Искусственное мясо

5 августа 2013 года в Лондоне был представлен первый гамбургер, содержащий 140 грамм культивированного мяса. Оно было создано группой профессора Марка Поста из университета Маастрихта.

Бургер, на изготовление которого потребовалось два года и 325 тыс долл, состоял из 20 тыс тонких полос мышечной ткани коровы, выращенных в нидерландской лаборатории.

Повар Ричард Макгоун приготовил гамбургер перед телекамерами. Эксперты, диетолог Ханни Рутцер и автор исследований о будущем продуктов питания Джош Шонвальд посчитали, что мясо слишком сухое и обезжиренное.

С 2013 года лабораторная мясная индустрия значительно выросла: стартапы New Age Meats и Memphis Meats разрабатывают новые продукты питания.

«Невозможный» двигатель возможен

Ровно 20 лет ученые со всего мира пытаются доказать, что двигатель EmDrive, проект которого предложил британский инженер Роджер Шойер в 1999 году, является невозможным, поскольку он противоречит фундаментальным законам физики.

Шойер предложил свою силовую установку как один из вариантоввечного» двигателя для гипотетических межзвездных путешествий. В качестве движущей силы в EmDrive используется магнетрон, который генерирует микроволны, и, по заявлениям автора, накапливает энергию колебаний в резонаторе, создавая тягу.

Идея о том, что электромагнитные волны производят разное давление на стены двигателя и могут постоянно создавать тягу, противоречит закону Ньютона о сохранении импульса. Но, на практике, никому не удалось это опровергнуть, поскольку разные проекты EmDrive доказывали, что двигатель все же создает незначительную тягу в несколько микроньютонов. Этот эффект списывали на воздействия внешних сил, погрешности и плохое экранирование корпуса двигателя.

Летом этого года представители Немецкого Технического Университета Дрездена провели свой эксперимент, чтобы точно установить, работает ли двигатель EmDrive. Команда физиков под руководством Мартина Таймара разработала проект SpaceDrive, — «чрезвычайно чувствительный и невосприимчивый к вмешательству инструмент, который раз и навсегда положит конец дискуссии о EmDrive».

Авторы исследования создали точную копию двигателя EmDrive, с которым ученые NASA Пол Марч и Гарольд Уайт достигли незначительной тяги пару лет назад. Конструкция двигателя — это медный конус с обрезанным верхом, который помещен в вакуумную камеру. Источник микроволнового сигнала находится за пределами камеры и передается с помощью кабелей на антенны внутри конуса.

Чтобы засечь реальную тягу без каких-либо погрешностей, физики использовали маятниковые весы, которые измеряют силу крутящего момента, приложенного к оси маятника, а также лазерный интерферометр, который нивелирует физическое смещение маятниковых весов. Команда Таймара назвала свое устройствосамым чувствительным балансом тяги из когда-либо существовавших в мире».

Несмотря на создание специального экрана, который блокирует EmDrive от любых помех, включая действие магнитных полюсов Земли, сейсмические колебания планеты и тепловое расширение из-за нагрева от микроволн, ученые все же зафиксировали тягу в 3,4 микроньютона, что подтверждает дееспособностьневозможного» двигателя.

Теперь физики сетуют на нагревание меди, которое могло вызвать расширение конструкции и смещение центра тяжести двигателя, что, в теории, приводит к появлению тяги из-за внешнего воздействия. Как бы там ни было, Мартин Таймар собирается доказать, что сам EmDrive не может создавать тягу, и его команда уже разрабатывает два других измерительных прибора, которые должны исключить любое внешнее воздействие, включая термальную погрешность.

Фото: quantamagazine.org

Медицина

По дыханию распознана ранняя стадия рака легких

Год назад группа израильских, американских и британских ученых разработала устройство, которое способно точно идентифицировать рак легких и определить, в какой стадии он находится. Основой устройства стал анализатор дыхания со встроенным наночипом NaNose, способный «вынюхать» раковую опухоль с 90-процентной точностью, даже когда раковый узелок практически незаметен. В скором времени стоит ожидать анализаторов, которые смогут по «запаху» определять и другие виды рака.

Разработано первое полностью автономное искусственное сердце

Специалисты американской компании Abiomed разработали первое в мире полностью автономное постоянное искусственное сердце для имплантаций (AbioCor). Искусственное сердце предназначено для пациентов, у которых невозможно лечение собственного сердца или имплантация донорского.

На все времена

Нет ничего лучше классики. Если вы предпочитаете классику, что ж, ваш выбор достоин уважения. Рекомендуем следующих авторов.

Чарльз Дарвин

Если вы сможете продраться сквозь сухую викторианскую прозу Дарвину, содержание величайших книг Дарвина, «Путешествие Бигля» и «Происхождение видов», наградит вас. Несмотря на то, что в учебниках домыслы Дарвина выглядят просто и незамысловато, на деле они оказываются куда более глубокими и даже более полезными.

Исаак Ньютон

Вряд ли кто-то оспорит то, что Ньютон был одним из величайших мыслителей, когда-либо живших на Земле, и его работы вроде «Principia Mathematica» помогли осуществить массу переворотов в науке, в мышлении людей и в мире вообще. Да, многие из текстов Ньютона современному читателю покажутся устаревшими, но где искать истину, если не в древнем?

Галилео Галилей

В прошлом церковь очень расстраивалась, мягко говоря, если кто-то вел научные изыскания методом, расхожим с церковным. Работа Галилея и его хитроумный диалог о двух мирах привел его в теплые объятия инквизиции — и его труд стал красноречивым свидетельством того, что происходит с теми, кто борется за истину. Но обошлось.

Николай Коперник

Коперник писал на протяжении всей жизни, однако самый лучший труд вышел только тогда, когда он был на смертном одре — «О вращении небесных сфер». Конечно, этот труд очень сложно читать, но для всех, кто любит математику, это будет невероятно интересным путешествием в мир грандиозных открытий человека с ограниченными техническими средствами.

Аристотель

Многие знают Аристотеля за его труды по философии, однако он пробовал себя и в науках: в физике, в биологии и зоологии. Его взгляды были хорошо восприняты в Средние века и в период Ренессанса, ну а сегодня мы знаем наверняка, что многие из его идей (но не все) оказались неверными. Ни одна история научной мысли не осталась без влияния Аристотеля.

Примо Леви

Блестящий химик Леви был близок к тому, чтобы лишиться жизни после года, проведенного в Освенциме во время Второй мировой войны. Его книга «Периодическая таблица» была названа лучшей научной книгой каждым членом Королевского института Великобритании.

Если вам интересно почитать о десяти самых выдающихся футурологах современности, милости просим.

Мария Кюри — жизнь во имя науки

Это имя тоже известно практически всем, кто учился в школе. Еще бы, потому что Мария Кюри считается одной из самых великих ученых-женщин. Это первая женщина, которая удостоилась Нобелевской премии по физике — это знаменательное событие произошло в 1903 году. Более того, она является нобелевским лауреатом дважды, потому что в 1911 году она получила такую же награду за достижения в области химии.

К личным вещами Марии Кюри нельзя притрагиваться 1500 лет, потому что они радиоактивны

Мария-Кюри известна как человек, который впервые в истории рассказал миру о таком явлении, как радиоактивность. Вместе со своим мужем, Пьером Кюри, она буквально перевернула научные представления ученых XIX веки и открыла два новых химических элемента: радий и полоний. Кстати, ее отец был преподавателем физики и дружил с русским химиком Менделеевым. Когда она еще была простой сотрудницей лаборатории, ученый высказал уверенность в ее великом будущем.

Мария всю свою жизнь посвятила изучению радиации, но даже не подозревала, что тем самым ежедневно разрушает свой организм. В начале XX века люди не знали о вредном воздействии радиоактивных веществ и использовали их даже в изготовлении бытовых приборов — стрелки часов из радия, например, красиво светились в темноте. Неудивительно, что Мария Кюри носила радиоактивные элементы из лаборатории домой прямо в своем кармане и могла изучать их, грубо говоря, даже за кухонным столом.

Мария Кюри со своим мужем Пьером Кюри

Активное взаимодействие с радиоактивными веществами без защитной одежды, в конце концов, стало причиной смерти великой женщины. В 1934 году она умерла от апластической анемии, а потом умерла и ее дочь Ирен Жолио-Кюри — причиной стала анемия, вызванная воздействием находившихся дома радиоактивных веществ. На данный момент личными вещами Марии Кюри нельзя пользоваться без защитных костюмов, а ее тело было положено в цинковый гроб. А все потому, что все ее тело и личные вещи излучают радиацию.

Мария Кюри входит в наш список семи ученых, которые . А в качестве биографического фильма можно посмотреть «Опасный элемент» 2019 года.

Альберт Эйнштейн

Альберт Эйнштейн и Ричард Толман (слева) в Калтехе в 1932 году

Наиболее известны: общая и Специальная Теория Относительности
Награды: Нобелевская Премия: (1921), Медаль Макса Планка (1929)

Альберт Эйнштейн был знаменитостью в мире науки. Он был первым и, пожалуй, единственным ученым, который стал нарицательным. В молодом возрасте его математическое мастерство намного превосходило его сверстников. Он не только учил себя геометрии и алгебре, но к 12 годам Эйнштейн разработал доказательство теоремы Пифагора.

В 1900 году Эйнштейн получил работу помощника эксперта в патентном ведомстве. В том же году он опубликовал свою первую научную работу. Золотой период в академической карьере Эйнштейна наступил в 1905 году, когда он опубликовал четыре статьи, которые сформировали большую часть современной физики.

Первая статья была посвящена фотоэффекту, в которой он теоретизировал существование фотонов. Это принесло ему Нобелевскую премию в 1921 году. В третьем докладе того года Эйнштейн представил специальную теорию относительности. Это привело к возникновению E = MC2.

В 1915 году, углубляясь в специальную теорию относительности, Эйнштейн описал свою теорию гравитации в общей теории относительности. Это в основном говорит нам, что все, что имеет массу, вызывает искажения в пространстве-времени. Его теория была засвидетельствована научным сообществом во время солнечного затмения в 1919 году.

Эйнштейн с помощью общей теории относительности предсказал существование гравитационных волн. Спустя столетие исследователи наконец смогли обнаружить эти волны напрямую.

Авиация

Братья Орвил и Уилбур Райт вошли в историю человечества как первые пилоты. Не в последнюю очередь великие открытия 20 века — это и новые виды транспорта. Орвилу Райту удалось совершить управляемый полет в 1903 году. Самолет, разработанный им вместе с братом, продержался в воздухе лишь 12 секунд, но это был настоящий прорыв для авиации тех времен. Дата полета считается днем рождения этого вида транспорта. Братья Райт первыми спроектировали систему, которая скручивала бы консоли крыла тросами, позволяя управлять машиной. В 1901 году была создана и аэродинамическая труба. Они же изобрели и пропеллер. Уже к 1904 году свет увидела новая модель самолета, более совершенная и способная не только на полет, но и на выполнение маневров. В 1905-м появился третий вариант, который мог оставаться в воздухе около тридцати минут. Через два года братья подписали контракт с армией США, а позже самолет купили и французы. Многие начали задумываться о перевозке пассажиров, и Райты внесли необходимые поправки в свою модель, установив дополнительное сиденье и сделав двигатель мощнее. Так начало 20 века открыло для человечества совершенно новые возможности.

Лапша быстрого приготовления

Перечисляя великие открытия 20 века, нельзя забывать и о том, что кажется на первый взгляд мелочью. Лапша быстрого приготовления – привычный бытовой продукт, но ее появление изменило ситуацию с питанием в условиях отсутствия кухни или на рабочем месте и тоже было серьезным достижением. Макароны такого типа придумал японец Андо Момофуки. Послевоенная Япония нуждалась в продовольствии, и доступная еда без особых сложностей в приготовлении явно исправила бы ситуацию. Так Андо решил начать поиски специальной лапши. Он перепробовал множество способов приготовления, пока ему не попалось бездрожжевое жидкое тесто, которое прекрасно подходило для сушки. В 1958 году он начал производство своей лапши, а сегодня ежегодно употребляется более сорока миллиардов порций подобного продукта. Еще одним открытием Андо Момофуки стало использование особых пластиковых чашек, которые позволили бы приготовить быстрое блюдо без посуды.

Пластилин

Вопрос о том, кого считать изобретателем пластилина, является спорным. В Германии им считают Франца Колба (патент 1880 года), в Великобритании — Уильяма Харбута (патент 1899 года). Существует еще одна версия создания пластилина, согласно которой это вещество придумал Ной Маквикер.

Липкий материал был создан Ноем Маквикером, работавшим на тот момент со своим братом Клео в компании Kutol, производившей мыло. Однако изначально изготовленный Маквикером материал не задумывался как игрушка. Он разрабатывался как средство для очистки обоев.

Одной из проблем, с которой приходилось сталкиваться держателям каминов, которыми люди отапливали дома, была сажа, оседавшая на стены и портившая обои. Липкая глина обещала беспроблемную очистку. Однако вскоре в моду вошли виниловые обои, которые можно было мыть простой губкой, смоченной водой, и чистящая глина стала неактуальной.

Когда Маквикеры уже собирались выйти из бизнеса, к ним поступила новая идея, предложенная воспитательницей детского сада по имени Кей Зуфалл, которая заметила, что материал отлично меняет форму и его можно использовать для лепки. Через общих близких родственников она сообщила об этой идее Ною Маквикеру. Тот, в свою очередь, решил удалить из материала моющую составляющую и добавил в него краситель. Изначальное название нового материала «Kutol’s Rainbow Modelling Compound» решили заменить на предложенный Кей вариант «пластилин».

Эксперимент с двойной щелью

Выше мы отмечали, что все может быть и частицей, и волной одновременно. Но вот в чем загвоздка: если в руке лежит яблоко, мы точно знаем, какой оно формы. Это яблоко, а не какая-нибудь яблочная волна. Что же определяет состояние частицы? Ответ: мы.

Эксперимент с двумя щелями — это просто невероятно простой и загадочный эксперимент. Вот в чем он заключается. Ученые размещают экран с двумя щелями напротив стены и выстреливают пучком света через щель, чтобы мы могли видеть, где он будет падать на стену. Поскольку свет — это волна, он создаст определенную дифракционную картину, и вы увидите полоски света, рассыпанные по всей стене. Хотя щели было две.

Но частицы должны реагировать иначе — пролетая через две щели, они должны оставлять две полоски на стене строго напротив щелей. И если свет — это частица, почему же он не демонстрирует такое поведение? Ответ заключается в том, что свет будет демонстрировать такое поведение — но только если мы захотим. Будучи волной, свет пролетает через обе щели одновременно, но будучи частицей, он будет пролетать только через одну. Все, что нам нужно, чтобы превратить свет в частицу — измерять каждую частицу света (фотон), пролетающую сквозь щель. Представьте себе камеру, которая фотографирует каждый фотон, пролетающий через щель. Этот же фотон не может пролетать через другую щель, не будучи волной. Интерференционная картина на стене будет простой: две полоски света. Мы физически меняем результаты события, просто измеряя их, наблюдая за ними.

Это называется «эффект наблюдателя». И хотя это хороший способ закончить эту статью, она даже поверхностно не копнула в совершенно невероятные вещи, которые находят физики. Есть куча вариаций эксперимента с двойной щелью, еще более безумные и интересные. Можете поискать их, только если не боитесь, что квантовая механика засосет вас с головой.

Материя, антиматерия и темная материя

Однако для понимания физики микромира, кроме коллайдеров, можно использовать астрофизические наблюдения. Так вот, изучая звезды и галактики, астрофизики сделали вывод, что должны быть еще какие-то частицы, которых нет в СМ. То есть астрофизики могут точно сказать, что Новая физика существует, но не знают, как именно она выглядит. Чтобы ответить на этот вопрос, надо увидеть эти частицы на ускорителях. А этого пока сделать не удается.

Какие же конкретно астрофизические явления не удается объяснить в рамках Стандартной модели?

Во-первых, мы точно знаем, что звезды состоят из материи, а антиматерии практически нет. В рамках СМ это непонятно. В момент рождения Вселенной — Большого взрыва — материя и антиматерия должны были рождаться в равной мере, однако затем антиматерия куда-то исчезла. Должен быть процесс, в котором антиматерия исчезает, а материя остается, но в рамках СМ такого нет. Нужны какие-то еще неизвестные частицы Новой физики, которые могут обеспечить исчезновение антиматерии.

Во-вторых, в астрофизике наблюдаются явления, прямо указывающие на существование неизвестной — темной — материи, и более того, темной энергии, которые также невозможно объяснить в СМ. Во Вселенной наблюдаются силы гравитационного притяжения в несколько раз большие, чем те, которые были бы, если бы существовали только видимые звезды и галактики. Это указывает на существование темной материи, которая состоит из каких-то неизвестных частиц Новой физики. Поэтому физики думают, как создать более общую теорию, которая одновременно опишет и элементарные частицы, и астрофизические наблюдения и позволит объяснить саму Стандартную модель.

Слайды презентации

Слайд 1

Великие географические открытия

Слайд 2

Географические открытия древности

Люди путешествовали всегда. Много-много тысяч лет назад древние охотники пускались в путь, чтобы найти охотничьи угодья. Древние скотоводы вместе со своими стадами отправлялись в многодневные походы на поиски свежих пастбищ. Люди осваивали новые земли, пересекали пустыни и перебирались через горы, на лёгких лодочках переплывали моря и даже океаны.

Слайд 3

Самые первые карты выглядели как рисунки. Так, древний путешественник пять тысяч лет назад изобразил на серебряной вазе две реки, текущие с гор в озеро, горы, покрытые лесом, а по берегам рек —разных животных, которые там обитали.

Слайд 4

Великие географические открытия — период в истории человечества, начавшийся в XV веке и продолжавшийся до XVII века, в ходе которого европейцы открывали новые земли и морские маршруты в Африку,Америку, Азию и Океанию в поисках новых торговых партнёров и источников товаров, пользовавшихся большим спросом в Европе. Историки обычно соотносят «Великие географические открытия» с первопроходческими дальними морскими путешествиямипортугальских и испанских путешественников в поисках альтернативных торговых путей в «Индии» за золотом,серебром и пряностями.

Слайд 5

Поиск морских путей в Индию

Одной из сильнейших морских держав 15 в. была Португалия, контролировавшая морские пути из Средиземного в Балтийское море. Португальцы захватили Марокко и стали искать пути на юг. Они скупали у местных жителей за бесценок товары, а их самих продавали в рабство.

Слайд 6

Продвигаясь на юг экспедиция Бартоломеу Диаша, достигла южной точки Африки, которая была названа мысом Доброй Надежды. Вскоре экспедиция португальского короля под руководством Васко да Гама обогнула Африку и в 1498 году достигла индийского города Калькутта

Слайд 7

Бартоломеу Диаш Васко Да Гама

Слайд 8

Открытие Америки Колумбом

Путь в Индию искали и испанцы. Они считали, что Земля-шар, и поэтому надеялись отыскать Индию на Западе. В 1484 г выходец из Генуи Колумб обратился с таким предложением к королеве Испании Изабелле. В 1492 г. на 3 кораблях он отправился на запад. Через 70 дней один из матросов заметил Землю. Колумб решил, что это один из китайских островов. Он назвал его Сан-Сальвадор. Вскоре он открыл Кубу и Гаити. Их жители легко отдавали испанцам драгоценности. Колумб вернулся на одном корабле, но привез столько сокровищ, что монархи согласились снарядить новые экспедиции (еще 3 ),но золота он так и не нашел.

Слайд 9

Христофор Колумб

Слайд 10

Колумб был уверен ,что открыл путь в Индию.Только экспедиция Америго Веспуччи доказала, что это – новый материк .Он получил название-Америка.

Слайд 12

Открытие Тихого океана

Васко Нуньес де Бальбоа обнаружил, что за американским континентом простирается море. Фернан Магеллан решил до него добраться.В сентябре 1519 года во главе флотилии из пяти небольших кораблей Магеллан вышел из порта города Севилья и взял курс на Бразилию. Проплыв на юг вдоль берегов Южной Америки, Магеллан нашёл узкий и извилистый пролив, по которому его корабли вышли в океан. Этот пролив позже назвали Магелановым.

Слайд 14

Васко Нуньес де Бальбоа

Слайд 15

Открытие Антарктиды

О присутствии в районе Южного полюса материка, догадывались ещё в древности. Его искали и Абел Тасман и Джеймс Кук. Нашли русские моряки – Фадей Фадеевич Беллинсгаузен и Михаил Петрович Лазарев.В 1819 году экспедиция под их командованием на двух шлюпках – «Восток» и «Мирный» — отправились из Кронштадта.Цель экспедиции –была достигнута. Мореплаватели увидели гористый берег. Так был открыт новый материк, покрытый вечными льдами.Впервые человек ступил на землю Антарктиды только в 1895 году.В наше время находятся научно – исследовательские станции 24 государств.

Слайд 17

Открытие Северного полюса

Норвежский исследователь Фритьоф Нансен в 1893 году на корабле «Фрам». За 500 километров до полюса корабль застрял во льдах, путешественник вернулся обратно пешком.Американец Роберт Эдвин Пири добрался до полюса на оленьих упряжках 7 сентября 1908 года. Водрузил Американский флаг.

Слайд 19

Корабль «Фрам»

Слайд 20

Открытие Южного полюса

Норвежец Руаль Амундсен на эскимосских ездовых собаках и лёгких санях в меховой одежде отправился в 1911 году к Южному полюсу и достиг его 14 декабря.Английский офицер Роберт Фолкон Скотт на маленьких лошадках-пони в шерстяной и брезентовой одежде тоже отправился к Южному полюсу и пришёл на месяц позже.На обратном пути англичане погибли.

Роботы, которые уничтожают вирусы

Мини-роботы смогут уничтожить все вирусы

В том же 2014 году перед 1024 крошечными роботами «килоботами» была поставлена задача объединиться в форму звезды. Без каких-либо дополнительных инструкций, роботы самостоятельно и сообща приступили к выполнению задания. Медленно, неуверенно, сталкиваясь между собой несколько раз, но они все же выполнили поставленную перед ними задачу. Если кто-то из роботов застревал или «терялся», не зная, как стать, на помощь приходили соседние роботы, которые помогали «потеряшкам» сориентироваться.

В чем достижение? Все очень просто. Теперь представьте, что такие же роботы, только в тысячи раз меньшего размера, вводятся в вашу кровеносную систему и объединяясь направляются на борьбу засевшего в вашем организме какого-нибудь серьезного заболевания. Более же крупные роботы, также объединяясь, отправляются на какую-нибудь поисково-спасательную операцию, а еще более крупные – используются для фантастически быстрого строительства новых зданий. Тут, конечно, можно вспомнить и какой-нибудь сценарий для летнего блокбастера, но зачем нагнетать?

12 Порох и Огнестрельное оружие

Существуют устойчивые многочисленные мнения, что порох был изобретён в Китае. Его появление привело к изобретению фейерверков и ранних образцов огнестрельного оружия. С начала времён люди делили территории и защищали их, и для этого им всегда было нужно какое-то оружие. Сначала были палки, потом топоры, затем луки, а после появления пороха и огнестрельное оружие. Сейчас для военных целей создано много видов оружия, от простых пистолетов, до новейших межконтинентальных ракет, которые запускаются с подводной лодки. Помимо армии оружие используется и гражданскими лицами как для своей защиты и охраны чего бы то ни было, так и для охоты.

Шариковая ручка

Изучая научно-технические изобретения, можно забыть о небольших бытовых улучшениях, имеющих серьезное значение. Например, привычная всем шариковая ручка появилась лишь в 1943 году. Ее изобрел Ласло Биро, который наблюдал за процессом печати газет и задумался, почему не наполнить резервуар ручки такими же быстросохнущими чернилами? Они должны быть густыми. Чтобы они не забили отверстие ручки, там должен быть размещен шарик. Обдумав все это, Биро создал опытный образец. Эмигрировав в Аргентину, он нашел спонсора и начал производство чернильных авторучек. Первыми покупателями стали летчики, которые могли пользоваться ими и на высоте: обычное перо протекало при отсутствии давления. В 1953 году француз Марсель Бик преобразовал форму чернильной ручки и смог создать дешевые варианты, которые стали доступны любому человеку и покорили весь мир.

Судьба кота Шредингера

Одним из наиболее загадочных явлений квантовой механики является квантовая суперпозиция — нахождение элементарных частиц в нескольких состояниях одновременно до момента их измерения наблюдателем.

В первой половине прошлого века один из основателей квантовой механики Эрвин Шредингер предложил мысленный эксперимент, который объясняет квантовую суперпозицию: условный кот в коробке с кислотой является и живым и мертвым одновременно до тех пор, пока мы не откроем эту коробку и не определим его состояние. Осенью 2019-го ученые из Японии и Индии придумали, как заглянуть в коробку с котом, не убивая его.

Физики предложили решение проблемы кота Шредингера благодаря изменению методов анализа данных о состоянии элементарных частиц, а не благодаря их измерению, как это делали ранее. С помощью математических вычислений ученые смоделировали условную ситуацию: закрытую коробку с котом Шредингера нужно сфотографировать с помощью камеры, которая установлена снаружи коробки, и при этом может заснять сквозь коробку самого кота.

После создания такого фото в камере будет храниться два типа информации: первый о том, как изменилось состояние суперпозиции кота(ученые называют это квантовой меткой) и второй о том, является ли кот живым или мертвым. Мысленный эксперимент заключается в том, что такое фото оказывается в запутанном состоянии вместе с квантовой системой, и то, как мы извлечем информацию из него — напрямую повлияет на судьбу кота.

В данном случае можнопроявить» фото в темной комнате и определить, жив он или мертв, или же восстановить на размытом фото квантовую метку с помощью компьютера и вернуть кота в состояние неопределенности между жизнью и смертью.

Авторы эксперимента взяли за основу своей математической модели способность фотонов входить в запутанное состояние вместе с квантовой системой. Вместо того, чтобы определить состояние частицы(кота) посредством ее измерения, т. е. прямого влияния света(фотонов) на нее, они использовали условную камеру, которая фотографирует кота сквозь коробку.

Запечатленные фотоны на изображении оказываются запутанными с квантовой системой, что сохраняет оба типа информации — о том, как изменилась суперпозиция и о реальном состоянии кота. Считывая данные из этого изображения тем или иным образом мы, в теории, можем оживить/убить кота или восстановить его суперпозицию.

Фото: livescience.com

Медицинские преимущества серебра

В настоящее время известно, что серебро использует множество химических процессов, чтобы препятствовать размножению бактерий, замедлять скорость их метаболизма и нарушать гомеостаз. Эти процессы приводят к ослаблению бактерий и делают их более восприимчивыми к антибиотикам. Множество исследований показало, что смесь серебра и антибиотиков была до 1000 раз более эффективной в убийстве бактерий, нежели просто антибиотики.

Некоторые критики предупреждают, что серебро может оказывать токсичные эффекты на пациентов, но ученые не соглашаются с этим, утверждая, что небольшие и нетоксичные количества серебра только увеличивают эффективность антибиотиков, не принося вреда при лечении. Это весьма интересное открытие для медицинского мира, а применение драгоценных металлов продолжает развиваться в количественном и качественном отношении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector