Самые точные часы в мире — квантовые
Содержание:
- Взлом любых устройств
- Поиск далеких планет
- Поиск новых эффективных препаратов
- Картирование человеческого разума
- Абсолютная безопасность
- Примечания
- Стоим на краю
- Материаловедение и инженерия
- Устройство часов
- Заработок на финансовых рынках
- Нелокальность исследований
- Кто принимает решение о переводе Часов Судного дня?
- Типы атомных часов
- Все состоит из волн и частиц
- Что показывают Часы Судного дня сегодня?
- Редактирование генов
Взлом любых устройств
Конечно, с большой силой появляется и большая ответственность, и так же квантовая мощь, которая позволит осуществлять квантовое шифрование, также позволит хакерами беспроблемно взламывать самые сложные методы безопасности, которые обеспечиваются относительно примитивными машинами.
Сегодня самые сложные криптографические методы, как правило, основаны на чрезвычайно сложных математических задачах. И хотя этих препятствий достаточно, чтобы сдержать большинство бинарных суперкомпьютеров, квантовый компьютер сможет легко их обойти. Способность квантового компьютера находить закономерности в гигантских наборах данных с огромной скоростью позволит ему рассчитывать огромные числа, в то время как обычные компьютеры будут перебирать их по одному за раз. С кубитами и квантовой суперпозицией все возможные варианты будут проверяться одновременно.
Потребовалось почти два года, чтобы сотни компьютеров, работающие одновременно, смогли разблокировать один пример алгоритма RSA-768 (который имел два основных фактора и требовал ключ длиной семьсот шестьдесят восемь битов. Квантовый компьютер справится с этой задачей за секунду.
Поиск далеких планет
Никого не удивит, что квантовое вычисление будет широко использоваться в освоении космоса, что часто требует анализа огромных наборов данных.
Используя квантовые процессоры, охлажденные до 20 милликельвинов (близко к абсолютному нулю), инженеры NASA планируют использовать квантовые компьютеры для разрешения сложнейших задач оптимизации, связанных с миллиардами данных.
Например, ученые NASA смогут использовать крошечные колебания в квантовых волнах, чтобы обнаружить мелкие, едва уловимые перепады тепла в невидимых для нас звездах и, возможно, даже черных дыр.
NASA уже использует общие принципы квантовых вычислений для разработки безопасных и эффективных методов космических путешествий — особенно когда дело доходит до отправки роботов в космос. NASA планирует посылать роботизированные миссии в космос примерно за десять лет, и среди его задач стоит использование квантовой оптимизации для создания сверхточных инструментов прогнозирования того, что может случиться за время миссии — чтобы предупредить любой возможный исход и создать план действий на каждый случай.
Более тщательное и точное планирование роботизированных миссий также приведет к более эффективному использованию батарей, которые выступают одним из основных ограничивающих факторов, когда дело доходит до роботизированных космических миссий.
Поиск новых эффективных препаратов
Благодаря неизбежному росту вычислительной мощности, предсказанной законом Мура, появилось доступное секвенирование ДНК. Но теперь мы вот-вот вступим в эпоху медицины, построенной на квантовых вычислениях.
В то время как на рынке уже и без того много хороших лекарств, скорость с которой они производятся, а также их эффективность, на диво ограничены. Даже с новейшим приростом скорости и точности, они весьма незначительны из-за ограничений стандартных компьютеров.
С организмом, столь сложным, как человеческое тело, существует бесчисленное множество способов, которыми лекарство может реагировать на окружающую среду. Добавьте к этому безграничность генетического разнообразия на молекулярном уровне, и потенциальные исходы для неспецифических лекарственных препаратов резко начинают достигать миллиардных чисел.
И только у квантовых компьютеров будет возможность изучить каждый возможный сценарий взаимодействия с препаратом и представить не только наилучший возможный план действий, но также шансы человека на успешный прием конкретного препарата — за счет комбинации более точного и ускоренного секвенирования ДНК и более точного понимания фолдинга белка.
Эти же самые нововведения, особенно в отношении фолдинга белков, также неизбежно приведут к лучшему пониманию того, как функционирует жизнь в целом, что впоследствии приведет к гораздо более точной трактовке, улучшению препаратов и улучшению результатов.
Картирование человеческого разума
При всех удивительных достижениях, которые имели место в области нейронауки и сознания за последние несколько десятилетий, ученые до сих пор знают удивительно мало о том, как работает сознание.
Но мы, впрочем, знаем, что мозг человека — одна из самых сложных вещей в известной вселенной, и чтобы понять его полностью, необходима вычислительная сила нового типа.
Человеческий мозг состоит из 86 миллиардов нейронов — клеток, которые передают небольшие биты информации за счет активации быстрых электрических зарядов. И хотя электрическая часть работы мозга понятна довольно хорошо, само сознание остается загадкой. «Задача в том», говорит нейробиолог Рафаэль Юсте из Колумбийского университета, «чтобы определить, как физическая подложка клеток, связанных внутри этого органа, относится к нашему умственному миру, нашим мыслям, памяти, ощущениям».
И в попытке понять сознание нейрофизиологи в значительной степени полагались на аналогию с компьютером, поскольку мозг превращает сенсорные данные и вводы в относительно предсказуемые результаты. И что может быть лучше для понимания работы компьютера, чем сам компьютер?
Доктор Кен Хэйворт, невролог, который картирует мышиный мозг, считает, что составление визуализации полного мозга мухи займет примерно один-два года. Но та же идея сопоставления всего человеческого мозга будет просто невыполнима без квантовых вычислений.
Абсолютная безопасность
Помимо квантовых скачков в медицине, квантовые технологии также дают возможность создать практически невзламываемые методы кибербезопасности и сверхбезопасный обмен данными на длинных расстояниях.
В мире квантовых странностей существует явление под названием «квантовая запутанность», в которой две или более частиц соединяются загадочным образом, независимо от среды, которая существует между ними, и без какой-либо опознаваемой сигнализации. Это то, что Эйнштейн называл «жутким действием на расстоянии». И поскольку нет определенной среды, в которой связываются эти две частицы, сигналы, закодированные с использованием запутанных частиц, невозможно будет перехватить. Наука, необходимая для этой технологии, пока развита недостаточно. Однако продвижение в этом направлении окажет огромное влияние на частную и национальную безопасность.
Резко увеличившаяся вычислительная скорость также будет способствовать развитию кибербезопасности, поскольку экспоненциально большая вычислительная мощность квантовых компьютеров позволит им противостоять даже самым изощренным методам взлома, и это при помощи квантового шифрования.
Квантовые компьютеры смогут предугадывать «шаги» хакеров в миллионах или миллиардах возможных итерациях.
Примечания
- ↑ . Membrana (5 февраля 2010). Дата обращения 4 марта 2011.
-
Указанные частоты характерны именно для прецизионных кварцевых резонаторов, с самой высокой добротностью и стабильностью частоты, достижимой при использовании пьезоэффекта. Вообще же, кварцевые генераторы используются на частотах от единиц кГц до нескольких сотен МГц.
(Альтшуллер Г. Б., Елфимов Н. Н., Шакулин В. Г. Кварцевые генераторы: Справочное пособие. — М.: Радио и связь, 1984. — С. 121, 122. — 232 с. — 27 000 экз.) - (недоступная ссылка). CNews (3 сентября 2004). Дата обращения 13 декабря 2010.
- . Lenta.ru (18 марта 2010). Дата обращения 13 декабря 2010.
Стоим на краю
Она начала в духе «я пригласил вас, господа, с тем, чтобы сообщить вам пренеприятное известие». Она — это президент американского журнала Bulletin of the Atomic Scientists («Бюллетень ученых-атомщиков») Рейчел Бронсон. Дама была сурова.
«Сегодня мы не испытываем оптимизма. Сейчас 100 секунд до полуночи. Мы хотим показать, как близок мир к катастрофе в секундах — не в часах и даже не в минутах. Это самое близкое к Судному дню время за всю историю часов Судного дня», — отметила Рейчел Бронсон.
О1
Перевод стрелок на часах Судного дня, 24 января 2020 года
Фото: Bulletin of the Atomic Scientists/thebulletin.org
Полночь — это точка невозврата, время, когда произойдет ядерный катаклизм. Стрелки часов показывают уровень напряженности мировой обстановки. Чем ближе к полуночи, тем реальнее глобальный ядерный конфликт. На официальной церемонии перевода стрелок Бронсон отметила, что последние два года влиятельные лидеры только и делают, что разрушают наиболее эффективные методы сдерживания угроз — международные соглашения с жесткими режимами контроля — «в пользу своих собственных узких интересов и внутриполитической выгоды» (возможно, в этот момент у кого-то из «влиятельных лидеров» горели уши).
К Судному дню приближают и выход США из Парижского соглашения и Совместного всеобъемлющего плана действий по иранской ядерной программе, и неопределенность с продлением Договора по сокращению стратегических наступательных вооружений (СНВ-3).
«Наши механизмы сотрудничества подрываются в тот момент, когда они больше всего нам нужны», — цитирует ТАСС присутствующего на церемонии бывшего Генерального секретаря ООН Пан Ги Муна.
М2
Дональд Трамп объявляет о выходе США из Парижского соглашения, 1 июня 2017 года
Фото: Global Look Press via ZUMA Press/Joyce N. Boghosian
Среди факторов, спровоцировавших перевод стрелок и усугубивших положение, эксперты также назвали: неразрешенные политические конфликты, связанные с ядерными программами в Иране и Северной Корее; недостаточные меры в вопросе изменения климата; дезинформация с использованием кибертехнологий.
«Ситуация, очевидно, ухудшилась. Насчет климата вопрос темный, специалисты до сих пор не договорились. Что касается Ирана, это очень серьезно. Тот факт, что пока эскалацию удалось остановить, — очень большая удача и успех, — цитирует RT генерального директора Института региональных проблем Дмитрия Журавлева. По словам эксперта, ликвидация договора — это взрыв всей системы международной безопасности. — И это, наверное, самый большой шаг к так называемой ядерной полуночи».
Материаловедение и инженерия
Стоит ли говорить, что квантовые вычисления уже привели к массивным последствиям для материаловедения и инженерии, учитывая то, что квантовые расчеты лучше всего подходят для открытий на атомном уровне.
Сила квантовых вычислений позволит использовать все более сложные модели, которые будут отображать, как молекулы собираются и кристаллизуются с образованием новых материалов. Такие открытия, ведущие к созданию новых материалов, впоследствии приведут к созданию новых структур, имеющих последствия в сферах энергетики, борьбы с загрязнением и фармацевтических препаратов.
Квантовые вычисления смогут обеспечить весьма «надежную карту», позволив ученым имитировать и анализировать атомные взаимодействия с невероятной точностью, что в свою очередь приведет к созданию совершенно новых и более эффективных материалов — без проб и ошибок, неизбежно возникающих при попытке построить новые материалы в более широком масштабе. Это означает, что мы сможем найти и создать лучшие сверхпроводники, более мощные магниты, лучшие источники энергии и многое другое.
Устройство часов
Схема атомных часов
Часы состоят из нескольких частей:
- квантовый дискриминатор,
- кварцевый генератор,
- комплекс электроники.
Кварцевый генератор представляет собой автогенератор, в качестве резонансного элемента которого используются пьезоэлектрические моды кварцевого кристалла. Генерируемые им электромагнитные колебания имеют фиксированную частоту, равную, как правило, 10 МГц, 5 МГц или 2,5 МГц, с возможностью перестройки в небольших пределах (±10−6, например, изменением температуры кристалла). Обычно долговременная стабильность кварцевого резонатора мала и составляет около Δνν=10−7{\displaystyle \Delta \nu /\nu =10^{-7}}. С целью повышения его стабильности используют колебания атомов или молекул, для чего колебания кварцевого генератора с частотой νo{\displaystyle \nu _{o}} постоянно сравниваются c помощью частотно-фазового компаратора с частотой атомной линии νa{\displaystyle \nu _{a}}, регистрируемой в квантовом дискриминаторе. При появлении разницы в фазе и частоте колебаний схема обратной связи подстраивает частоту кварцевого генератора до требуемого значения, повышая тем самым стабильность и точность часов до уровня Δνν=10−14{\displaystyle \Delta \nu /\nu =10^{-14}}.
В СССР идеологом создания атомных часов был академик Николай Геннадиевич Басов.
Заработок на финансовых рынках
В переплетенном мире финансов, скорость имеет первостепенное значение.
Удивительно большое количество проблем, с которыми сталкивается финансовая отрасль (многие из которых связаны с нехваткой вычислительной скорости), остаются неразрешенными. Даже самые мощные обычные компьютеры, использующие 0 и 1, не могут хотя бы примерно спрогнозировать будущие финансовые и экономические события, не говоря уж о том, чтобы решить сложнейшие проблемы, связанные с ценообразованием опционов на быстро меняющемся рынке.
Например, многие опционы требуют сложных производных, зависящих от различных факторов, что означает, что выплата опциона в конечном счете определяется путем изменения цены базового актива. Попытка отобразить и предусмотреть все возможных «пути» опциона слишком сложна для современных машин. Однако, учитывая свою скорость и маневренность, квантовые компьютеры теоретически могли бы идентифицировать неверный ценовой вариант опциона на акции и использовать его для выгоды своего владельца до того, как рынок предпримет какие-либо значимые действия.
Такого рода мощь могла бы, конечно, нанести ущерб рынку и сильно поднять положение небольших фирм, владеющих и управляющих суперкомпьютером — за счет отдельных трейдеров и фирм, неспособных приобрести такие технологии.
Нелокальность исследований
Назвать квантовую физику локальной язык не поворачивается.
Последний великий вклад Эйнштейна в физику не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».
Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).
Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х — они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.
Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.
Кто принимает решение о переводе Часов Судного дня?
Первые годы Часы «настраивал» Евгений Рабинович, советуясь с коллегами. После его смерти в 1973 году решение о переводе стрелок принимает совет директоров журнала вместе с экспертами, среди которых 18 лауреатов Нобелевской премии. Более чем за 70 лет существования проекта время меняли 23 раза. Каждый перевод Часов подробным отчетом авторов «Бюллетеня».
Carolyn Kaster / AP / East News
Проект регулярно подвергается критике из-за отсутствия четких критериев. Например, исследователь-футуролог Андерс Сандберг , что разговоры об угрозе ядерной катастрофы или глобального потепления попросту являются искусственными, а все эти пессимистичные прогнозы не только не дают объективной оценки, но даже вводят в заблуждение.
Сами авторы проекта подчеркивают, что Часы ничего не предсказывают и тем более не показывают точное время, однако служат напоминанием того, что конец света неизбежен, если люди не будут задумываться о последствиях своих действий.
Типы атомных часов
Не всякий атом (молекула) подходит в качестве дискриминатора для атомных часов. Выбирают атомы, которые нечувствительны к различным внешним воздействиям: магнитным, электрическим и электромагнитным полям. В каждом диапазоне электромагнитного спектра излучения имеются такие атомы. Это: атомы кальция, рубидия, цезия, стронция, молекулы водорода, йода, метана, оксид осмия(VIII) и т. д. В качестве основного (первичного) стандарта частоты выбран сверхтонкий переход атома цезия. Характеристики всех остальных (вторичных) стандартов сравниваются с этим стандартом. Для того, чтобы осуществить такое сравнение, в настоящее время используются так называемые оптические гребёнки (англ.) — излучение с широким частотным спектром в виде эквидистантных линий, расстояние между которыми привязывается к атомному стандарту частоты. Оптические гребёнки получают с помощью фемтосекундного лазера с синхронизацией мод и микроструктурированного оптоволокна, в котором происходит уширение спектра до одной октавы.
В 2006 году исследователи из американского Национального института стандартов и технологий под руководством Джима Бергквиста (англ. Jim Bergquist) разработали часы, действующие на одном атоме ртути. При переходах между энергетическими уровнями иона ртути генерируются фотоны видимого диапазона со стабильностью в 5 раз выше, чем микроволновое излучение цезия-133. Новые часы могут также найти применение в исследованиях зависимости изменения фундаментальных физических постоянных от времени. По состоянию на апрель 2015 года самыми точными атомными часами являлись часы, созданные в Национальном институте стандартов и технологий США. Погрешность составила лишь одну секунду в 15 миллиардов лет. В качестве одного из возможных применений часов указывалась релятивистская геодезия, основная идея которой — использование сети часов в качестве гравитационных датчиков, что поможет провести невероятно детальное трёхмерное измерение формы Земли.
Ведутся активные разработки компактных атомных часов для использования в повседневной жизни (наручные часы, мобильные устройства).
В начале 2011 американская компания Symmetricom объявила о коммерческом выпуске цезиевых атомных часов размером с небольшую микросхему. Часы работают на основе эффекта когерентного пленения населённости. Их стабильность — 5 · 10-11 за час, масса — 35 г, потребляемая мощность — 115 мВт.
Все состоит из волн и частиц
Волны и частицы составляют основу всего.
Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.
Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это экспериментальный факт.
Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» — значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.
Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.
Что показывают Часы Судного дня сегодня?
24 января 2019 года стрелки часов оставили на прошлогодней отметке 23:58. Несмотря на то, что время на часах осталось неизменным, авторы проекта уточнили, что это не показатель стабильности, а «серьезное предупреждение» для мировых лидеров и всех жителей планеты, поскольку за 70 лет стрелка часов в третий раз оказалась столь близка к полуночи. Впервые этой отметки часы достигли в 1953 году, когда США и СССР проводили испытания водородной бомбы, а напряжение Холодной войны достигло пика.
Mark Wilson / Getty Images
Президент «Бюллетеня» Рэйчел Бронсон заявила, что мир сейчас находится в зыбком состоянии, далеком от нормы. Благоприятными моментами ученые назвали улучшение отношений между США и КНДР и развитие технологий, однако факт наличия ядерного оружия, климатические изменения и продолжающиеся конфликты между странами все еще склоняют чашу весов в негативную сторону. Кроме того, новой опасностью исследователи назвали информационную войну и фейковые новости.
«Мир, в котором фантазия и гнев подменяют правду, ужасен», — Херб Лин, старший научный сотрудник Стэнфордского университета в области кибербезопасности.
Редактирование генов
Завершение проекта генома человека в 2003 году привело к появлению новой эпохи в медицине.
Благодаря глубокому пониманию генома человека, мы можем адаптировать сложные процедуры специально под конкретные потребности человека.Несмотря на то, сколько мы уже знаем о тонкостях человеческой ДНК, мы до сих пор поразительно мало знаем о белках, которые кодирует ДНК.
Добавим квантовые расчеты, которые в теории позволят нам составлять «карту белков» так же, как мы собираем карту генов. По сути, квантовые расчеты также позволят нам моделировать сложные молекулярные взаимодействия на атомном уровне, что станет бесценным, если говорить о разработке новых методов медицинских исследований и фармацевтики. Мы могли бы смоделировать 20 000 белков и их взаимодействие с мириадами новых разных препаратов (даже тех, что еще не изобретены) с безукоризненной точностью. Анализ этих взаимодействий, опять же при помощи квантовых вычислений и продвинутых алгоритмов оптимизации, приведет нас к созданию новых методов лечения пока неизлечимых заболеваний.
Скорость квантового вычислений также позволит нам анализировать «квантовые точки» — крошечные полупроводниковые нанокристаллы размером в несколько нанометров, которые сейчас используются на передовой для лечения и обнаружения рака. Также квантовые компьютеры могли бы обнаруживать мутации в ДНК, которые пока кажутся совершенно случайными, и их связь с квантовыми флуктуациями.