Стремительное сдерживание: названы предельные показатели скорости ракетного комплекса «авангард»

Примеры разных скоростей

Четырехмерная скорость

В классической механике векторная скорость измеряется в трехмерном пространстве. Согласно специальной теории относительности, пространство — четырехмерное, и в измерении скорости также учитывается четвертое измерение — пространство-время. Такая скорость называется четырехмерной скоростью. Ее направление может изменяться, но величина постоянна и равна c, то есть скорости света. Четырехмерная скорость определяется как

U = ∂x/∂τ,

где x представляет мировую линию — кривую в пространстве-времени, по которой движется тело, а τ — «собственное время», равное интервалу вдоль мировой линии.

Лунный скафандр в экспозиции Космического центра имени Кеннеди

Групповая скорость

Виндсерфинг. Майами Бич.

Групповая скорость — это скорость распространения волн, описывающая скорость распространения группы волн и определяющая скорость переноса энергии волн. Ее можно вычислить как ∂ω/∂k, где k — волновое число, а ω — угловая частота. K измеряют в радианах/метр, а скалярную частоту колебания волн ω — в радианах в секунду.

Гиперзвуковая скорость

Гиперзвуковая скорость — это скорость, превышающая 3000 метров в секунду, то есть во много раз выше скорости звука. Твердые тела, движущиеся с такой скоростью, приобретают свойства жидкостей, так как благодаря инерции, нагрузки в этом состоянии сильнее, чем силы, удерживающие вместе молекулы вещества во время столкновения с другими телами. При сверхвысоких гиперзвуковых скоростях два столкнувшихся твердых тела превращаются в газ. В космосе тела движутся именно с такой скоростью, и инженеры, проектирующие космические корабли, орбитальные станции и скафандры, должны учитывать возможность столкновения станции или космонавта с космическим мусором и другими объектами при работе в открытом космосе. При таком столкновении страдает обшивка космического корабля и скафандр. Разработчики оборудования проводят эксперименты столкновений на гиперзвуковой скорости в специальных лабораториях, чтобы определить, насколько сильные столкновения выдерживают скафандры, а также обшивка и другие части космического корабля, например топливные баки и солнечные батареи, проверяя их на прочность. Для этого скафандры и обшивку подвергают воздействию ударов разными предметами из специальной установки со сверхзвуковыми скоростями, превышающими 7500 метров в секунду.

Автор статьи: Kateryna Yuri

Средние скорости

Скорость света и звука

Согласно теории относительности, скорость света в вакууме — самая большая скорость, с которой может передвигаться энергия и информация. Она обозначается константой c и равна c = 299 792 458 метров в секунду. Материя не может двигаться со скоростью света, потому что для этого понадобится бесконечное количество энергии, что невозможно.

Скорость звука обычно измеряется в упругой среде, и равна 343,2 метра в секунду в сухом воздухе при температуре 20 °C. Скорость звука самая низкая в газах, а самая высокая — в твердых телах. Она зависит от плотности, упругости, и модуля сдвига вещества (который показывает степень деформации вещества при сдвиговой нагрузке). Число Маха M — это отношение скорости тела в среде жидкости или газа к скорости звука в этой среде. Его можно вычислить по формуле:

Боинг 777-236/ER G-VIIN авиакомпании British Airways (Британские Авиалинии), заходящий на посадку в аэропорту Торонто имени Лестера Б. Пирсона (Канада)

M = v/a,

где a — это скорость звука в среде, а v — скорость тела. Число Маха обычно используется в определении скоростей, близких к скорости звука, например скоростей самолетов. Эта величина непостоянна; она зависит от состояния среды, которое, в свою очередь, зависит от давления и температуры. Сверхзвуковая скорость — скорость, превышающая 1 Мах.

Скорость транспортных средств

Ниже приведены некоторые скорости транспортных средств.

  • Пассажирские самолеты с турбовентиляторными двигателями: крейсерская скорость пассажирских самолетов — от 244 до 257 метров в секунду, что соответствует 878–926 километрам в час или M = 0,83–0,87.
  • Высокоскоростные поезда (как «Синкансэн» в Японии): такие поезда достигают максимальных скоростей от 36 до 122 метров в секунду, то есть от 130 до 440 километров в час.

Скорость животных

Максимальная скорость, с которой может бежать кошка — 13 метров в секунду или 47 километров в час.

Максимальные скорости некоторых животных примерно равны:

  • Ястреб: 89 метров в секунду, 320 километров в час (скорость высокоскоростного поезда)
  • Гепард: 31 метр в секунду, 112 километров в час (скорость более медленных высокоскоростных поездов)
  • Антилопа: 27 метров в секунду, 97 километров в час
  • Лев: 22 метра в секунду, 79 километров в час
  • Газель: 22 метра в секунду, 79 километров в час
  • Гну: 22 метра в секунду, 79 километров в час
  • Лошадь: 21 метр в секунду, 75 километров в час
  • Охотничья собака: 20 метров в секунду, 72 километра в час
  • Лось: 20 метров в секунду, 72 километра в часОздоровительный бег в Лондоне. Человек может достичь скорости до 30 км/ч.
  • Койот: 19 метров в секунду, 68 километров в час
  • Лиса: 19 метров в секунду, 68 километров в час
  • Гиена: 18 метров в секунду, 64 километра в час
  • Заяц: 16 метров в секунду, 56 километров в час
  • Кошка: 13 метров в секунду, 47 километров в час
  • Медведь гризли: 13 метров в секунду, 47 километров в час
  • Белка: 5 метров в секунду, 18 километров в час
  • Свинья: 5 метров в секунду, 18 километров в час
  • Курица: 4 метра в секунду, 14 километров в час
  • Мышь: 3,6 метра в секунду, 13 километров в час

Скорость человека

Люди ходят со скоростью примерно 1,4 метра в секунду или 5 километров в час, и бегают со скоростью примерно до 8,3 метра в секунду, или до 30 километров в час.

«Он сгорел бы дотла!»

Вокруг максимальной скорости «Авангарда» в 27 М, кстати, построено главное возражение комментаторов-критиков. Мол, для таких скоростей характерен высокий нагрев любого движущегося тела в атмосфере, в силу чего управляемый полет такого тела невозможен. Якобы «любые рули или крылья просто сгорят».

Начнем с того, что на гиперзвуке, под которым понимается движение со скоростями 5—30 М, присутствует совсем другая аэродинамика. За счет совсем иной, гораздо более высокой скорости потока, никаких «крыльев» или «рулей» для аппарата не нужно, он рулит исключительно своим корпусом. Вариант с ведущим конусом в носу аппарата или подвижной «юбкой» в хвосте, кстати, — лишь один из возможных. Например, американский космический челнок Space Shuttle и советский «Буран» также «рулили» на гиперзвуковом входе в атмосферу, но делали это с помощью управляемого наклона своего собственного корпуса аэродинамической формы

Движущиеся же элементы позволяют делать такие маневры более быстрыми и непредсказуемыми, что критически важно для гиперзвукового оружия

Второй факт, который не понимают критики управляемых боевых блоков, в том числе российского «Авангарда», заключается в том, что для «одноразовых» по сути гиперзвуковых объектов, которыми являются УББ, совершенно не нужны никакие тугоплавкие «сверхматериалы». 

Конечно, в свое время те же американцы вполне просчитывали всяческие альфа- и гамма-алюминиды титана, углерод-углеродные композиты, титановые композиты с металлической матрицей и кремний-углеродными волокнами для своего многоразового гиперзвукового самолета Х-30. Однако выяснилось, что это слишком дорого и не столь надежно, как давно проверенная выгорающая абляционная защита. 

Технология абляционной защиты уже много раз испытана на спускаемых аппаратах, которые аж со второй космической скоростью возвращали автоматические станции и пилотируемые аппараты в атмосферу Земли. Каждый раз, когда спускаемый аппарат «Союза» или «Аполлона», челнок Space Shuttle или «Буран» заходили в атмосферу, они испытывали на себе все факторы гиперзвукового полета. При этом даже обычная «фара» спускаемого аппарата «Союза» осуществляет пассивный гиперзвуковой маневр, спасая космонавтов от сверхперегрузок так называемого «баллистического» спуска с орбиты, которые вынуждены были терпеть космонавты первых советских кораблей «Восток» и «Восход».

Еще более показательна ситуация с космическими челноками: они не только «рулят» на гиперзвуке, но и осуществляют затем управляемую посадку, уже с использованием классических крыльев и аэродинамических рулей. Последние, за счет правильно созданной теплозащиты, вполне сохраняются при гиперзвуковом полете и действуют при посадке на землю.

Так что, критикам беспокоиться за «Авангард» не стоит. Садиться на военный аэродром ему не надо. «Авангарду» достаточно уверенно найти его в момент «удара возмездия» и гарантированно поразить цель. Ну а недоверчивым критикам стоит подучить курс физики.

Гонка гиперзвуковых вооружений

Наша страна первой не только разработала, но и поставила на вооружение гиперзвуковые комплексы. Истребитель-перехватчик МиГ-31К стал носителем ракет «Кинжал», предназначенных для борьбы с наземными и морскими целями. А в декабре прошлого года полк РВСН шахтного базирования оснастили межконтинентальным «Авангардом».

кинжал

Истребитель МиГ-31 с гиперзвуковой аэробаллистической ракетой комплекса «Кинжал»

Фото: РИА Новости/Министерство обороны РФ

На сегодня гиперзвуковое оружие есть только у России, однако многие зарубежные государства активно занимаются его разработкой, отметил профессор Академии военных наук Вадим Козюлин.

— Американцы поступательно двигаются в сторону создания гиперзвуковых аппаратов, — сообщил он «Известиям». — Впереди серьезная гонка в этой сфере. И нам уже сейчас надо работать над средствами защиты от таких видов вооружений. Кстати, над аналогичными средствами в США тоже работают.

Накануне президент США Дональд Трамп заявил, что американцы располагают супербыстрыми ракетами, способными двигаться в 5–7 раз быстрее, чем обычные. Выступая перед губернаторами, глава Соединенных Штатов также привел свое объяснение того, что первое гиперзвуковое оружие появилось именно у России: по его словам, Москва, возможно, получила технологии из планов администрации прежнего хозяина Белого дома — Барака Обамы.

В конце января и.о. командующего ВМС США Томас Модли признал, что его страна отстала от России в создании гиперзвукового оружия. Он сравнил ситуацию с 1957 годом, когда СССР первым запустил искусственный спутник Земли. Глава Пентагона Марк Эспер объявил об удвоении в наступившем году финансирования разработки гиперзвуковых боеприпасов наземного, воздушного и морского базирования. По данным американских СМИ, сейчас в интересах военных ведется девять проектов. На 2020 год назначены летные испытания четырех прототипов.

ракета

Гиперзвуковая ракета США AGM-183A ARRW

Фото: twitter.com/ninja998998

Флот США испытает в этом году собственную гиперзвуковую планирующую боевую часть — глайдер. Им планируют оснастить ракеты, которые поступят на вооружение новых эсминцев. ВВС США опробуют два боеприпаса для подвески на бомбардировщики, включая уже рассекреченный AGM-183A ARRW. Армия начала работы над ракетой наземного пуска с маневрирующей боеголовкой Long-Range Hypersonic Weapon. Остальные проекты находятся на более ранней стадии. Все они будут иметь неядерные боевые части.

Собственные разработки в данном направлении активно ведут и в Китае. Осенью там была представлена баллистическая ракета средней дальности DF-17 с маневрирующей головной частью. Зарубежные СМИ уже называют сложившуюся ситуацию гонкой гиперзвуковых вооружений. По оценкам американского командования, новое оружие изменит будущие войны не меньше, чем это сделало появление ядерного оружия.

— Разработка защиты от нестратегических гиперзвуковых ракет начинается во всем мире, в США тоже занимаются поиском таких средств, — рассказал Вадим Козюлин. — DARPA (управление перспективных исследовательских проектов Пентагона. — «Известия») выделило несколько миллионов долларов на их создание. Сумма относительно небольшая, и вряд ли можно ожидать результатов в ближайшее время. Но это пробный камень.

Ведущееся проектирование комплекса МФРК ДП демонстрирует, что Россия находится впереди не только в создании передовых вооружений, но также и средств защиты от них.

Число Маха в газовой динамике

Число Маха

M=va,{\displaystyle {\mathsf {M}}={\frac {v}{a}},}

где v{\displaystyle v} — скорость потока, а a{\displaystyle a} — местная скорость звука,

является мерой влияния сжимаемости среды в потоке данной скорости на его поведение: из уравнения состояния идеального газа следует, что относительное изменение плотности (при постоянной температуре) пропорционально изменению давления:

dρρ∼dpp,{\displaystyle {\frac {d\rho }{\rho }}\sim {\frac {dp}{p}},}

из закона Бернулли разность давлений в потоке dp∼ρv2{\displaystyle dp\sim \rho v^{2}}, то есть относительное изменение плотности:

dρρ∼dpp∼ρv2p.{\displaystyle {\frac {d\rho }{\rho }}\sim {\frac {dp}{p}}\sim {\frac {\rho v^{2}}{p}}.}

Поскольку скорость звука a∼pρ{\displaystyle a\sim {\sqrt {p/\rho }}}, то относительное изменение плотности в газовом потоке пропорционально квадрату числа Маха:

dρρ∼v2a2=M2.{\displaystyle {\frac {d\rho }{\rho }}\sim {\frac {v^{2}}{a^{2}}}={\mathsf {M}}^{2}.}

Наряду с числом Маха используются и другие характеристики безразмерной скорости течения газа:

коэффициент скорости

λ=vvK=γ+12M(1+γ−12M2)−12{\displaystyle \lambda ={\frac {v}{v_{K}}}={\sqrt {\frac {\gamma +1}{2}}}{\mathsf {M}}\left(1+{\frac {\gamma -1}{2}}{\mathsf {M}}^{2}\right)^{-1/2}}

и безразмерная скорость

Λ=vvmax=γ−12M(1+γ−12M2)−12,{\displaystyle \Lambda ={\frac {v}{v_{\max }}}={\sqrt {\frac {\gamma -1}{2}}}{\mathsf {M}}\left(1+{\frac {\gamma -1}{2}}{\mathsf {M}}^{2}\right)^{-1/2},}

где vK{\displaystyle v_{K}} — критическая скорость,

vmax{\displaystyle v_{\max }} — максимальная скорость в газе,
γ=cpcv{\displaystyle \gamma ={\frac {c_{p}}{c_{v}}}} — показатель адиабаты газа, равный отношению удельных теплоёмкостей газа при постоянных давлении и объёме соответственно.

США и КНР: пытаясь догнать Россию

Комплекс «Авангард» — это, по сути, не ракета как таковая, а универсальный боевой блок, который может быть установлен на любую из ракет, находящихся в российском стратегическом арсенале.

Разумеется, попав в руки военных, гиперзвуковые разработки обрастают аурой секретности, в силу чего многие параметры разрабатываемых аппаратов нам доподлинно неизвестны, а для некоторых у нас даже нет официальных фотографий, которые заменены рисунками «по мотивам». Однако для вооруженного взгляда эксперта, имеющего представление о сущности гиперзвукового движения, ход разработок по гиперзвуковым летательным аппаратам не является «страшной военной тайной». Особенно учитывая тот факт, что большая часть советских разработок уже не просто разглашена, но и снабжена официальными фотографиями и описаниями.

Кроме того, работы по УББ ведутся не только в России, но и в США и КНР, которые тоже хотят получить в свое распоряжение похожее оружие. В частности, Штаты в 2010-х годах испытывали свой УББ под совершенно неудобоваримым названием «Продвинутое Гиперзвуковое Оружие» (Advanced Hypersonic Weapon, AHW), который они ускорили с помощью ракетных двигателей до скорости около 10М, а потом свалили на голову «условного противника», отрабатывая управляемое движение и планирование с гиперзвуковыми скоростями. Причем в качестве управляющего элемента упоминалась «биконическая форма» AHW, которая, по сути, копировала подход советской разработки 15Ф178. Правда, испытания AHW, как было заявлено, были признаны «малоуспешными».

Еще меньше официальной информации есть о китайской разработке, получившей условное наименование WU-14. В 2014—2016 годах КНР семь раз успешно испытали этот гиперзвуковой объект, продекларировав в качестве цели «научные задачи». Конечно, способность развивать скорость в диапазоне 5—10 М и управляемый гиперзвуковой полет мало чем помогают в деле исследования верхних слоев земной атмосферы, однако вполне могут использоваться для доставки к цели ядерного оружия с гарантированным прорывом ПРО, а также для создания носителя для высокоточных неядерных средств поражения.

Таким образом, и США, и КНР, и Россия вплотную подошли к серийному производству гиперзвуковых управляемых блоков. При этом российский «Авангард» выглядит на голову выше американской и китайской разработок — как в вопросе доведенности конструкции, так и в части максимальной скорости.

Общие сведения

Поезд в движении. Железнодорожный вокзал в Симферополе, Крым, Россия.

Скорость — мера измерения пройденного расстояния за определенное время. Скорость может быть скалярной величиной и векторной — при этом учитывается направление движения. Скорость движения по прямой линии называется линейной, а по окружности — угловой.

Измерение скорости

Среднюю скорость v находят, поделив общее пройденное расстояние ∆x на общее время ∆t: v = ∆x/∆t.

В системе СИ скорость измеряют в метрах в секунду. Широко используются также километры в час в метрической системе и мили в час в США и Великобритании. Когда кроме величины указано и направление, например 10 метров в секунду на север, то речь идет о векторной скорости.

Скорость движущихся с ускорением тел можно найти с помощью формул:

  • Тело, движущееся с постоянным ускорением a, с начальной скоростью u в течении периода ∆t, имеет конечную скорость v = u + a×∆t.
  • Тело, движущееся с постоянным ускорением a, с начальной скоростью u и конечной скоростью v, имеет среднюю скорость ∆v = (u + v)/2.

«Ни у одной страны нет гиперзвукового оружия»

Россия — единственная в мире страна, на вооружении которой находится гиперзвуковое оружие, отмечал 24 декабря Владимир Путин.

«Ни у одной страны сегодня нет гиперзвукового оружия вообще, а гиперзвукового оружия континентальной дальности — тем более», — сказал он.

Также по теме


Стремительное сдерживание: названы предельные показатели скорости ракетного комплекса «Авангард»

Гиперзвуковой ракетный комплекс межконтинентальной дальности «Авангард» в ходе последних испытаний достиг скорости порядка 27 Махов…

В ходе испытаний выпущенная «Авангардом» ракета достигла скорости в 27 Махов, подчёркивал в декабре прошлого года вице-премьер Юрий Борисов. Число Маха, упрощённо, демонстрирует, во сколько раз скорость летательного аппарата выше скорости звука в определённой среде. В случае с «Авангардом», таким образом, можно говорить о скорости в 33 тыс. км/ч.

Учитывая такую скорость, «практически ни одна противоракета не может его сбить», подчёркивал Борисов.

«Практически обнуляется противоракетная оборона. Очень тяжело этот блок обнаружить и тем более поразить», — говорил он в эфире «Россия 24» в декабре прошлого года.

Причём касается это не только существующих систем ПРО, но и перспективных, отметил военный эксперт, полковник в отставке Виктор Литовкин.

«Боевой блок имеет скорость 27 Махов — это 27 скоростей звука, летит по непредсказуемой траектории, его не в состоянии перехватить ни одна система ПВО: ни нынешняя, ни перспективная», — сказал он RT.

В то же время «Авангард» не нарушает Договор о сокращении и ограничении стратегических наступательных вооружений (СНВ-III). Об этом в эфире «Россия 24» рассказал постоянный член Совета безопасности России и бывший глава Минобороны Сергей Иванов.

«У нас были испытательные пуски в 2012—2013 годах, они проводились строго в рамках всех международных соглашений, и даже сейчас, с принятием на вооружение «Авангарда», мы не выйдем ни из каких параметров СНВ-III, например», — подчёркивал он.

В ноябре США провели инспекцию «Авангарда» в рамках СНВ-III. Об этом сообщило Минобороны России.

«В рамках реализации Договора между Российской Федерацией и Соединёнными Штатами Америки о мерах по дальнейшему сокращению и ограничению стратегических наступательных вооружений в период с 24 по 26 ноября на территории РФ американской инспекционной группе был продемонстрирован ракетный комплекс «Авангард» с гиперзвуковым планирующим крылатым блоком», — говорится в сообщении.

До этой демонстрации в США сомневались, что «Авангард» действительно существует, но теперь наличие этого комплекса будет действовать успокаивающе на излишне воинственных политиков в Вашингтоне, считает Литовкин.

Предельно упрощённое объяснение числа Маха

Для понимания числа Маха неспециалистами очень упрощённо можно сказать, что численное выражение числа Маха зависит, прежде всего, от высоты полёта (чем больше высота, тем ниже скорость звука и выше число Маха). Число Маха — это истинная скорость в потоке вещества (то есть скорость, с которой воздух обтекает, например, самолёт), делённая на скорость звука в этом веществе в этих условиях. У земли скорость, при которой число Маха будет равно 1, будет равна приблизительно 340 м/с (скорость, с использованием которой люди оценивают расстояние до приближающейся грозы, измеряя время от вспышки молнии до дошедших раскатов грома) или 1224 км/ч. На высоте 11 км из-за падения температуры скорость звука ниже — около 295 м/с или 1062 км/ч.

Такое объяснение не может использоваться для каких бы то ни было математических расчётов скорости или иных математических операций по аэродинамике.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector