Разница во времени на земле и в космосе
Содержание:
Быстрее света?
Если допустить, что мы, так сказать, научились плавать, сможем ли мы тогда освоить скольжение по космическому времени — если развивать дальше эту аналогию — и летать со сверхсветовой скоростью?
Гипотеза о врожденной способности к выживанию в сверхсветовой среде хотя и сомнительна, но не лишена определенных проблесков образованной просвещенности в кромешной тьме.
Один из таких интригующих способов перемещения основан на технологиях, подобных тем, что применяются в «варп-двигателе» или «двигателе искривления» из сериала «Звездный путь».
Принцип действия этой силовой установки, известной еще как «двигатель Алькубьерре»* (названного по фамилии мексиканского физика-теоретика Мигеля Алькубьерре), состоит в том, что он позволяет кораблю сжимать перед собой нормальное пространство-время, описанное Альбертом Эйнштейном, и расширять его позади себя.
Image caption
Нынешний рекорд скорости принадлежит трем астронавтам «Аполлона 10» — Тому Стаффорду, Джону Янгу и Юджину Сернану
По существу, корабль перемещается в некоем объеме пространства-времени, своеобразном «пузыре искривления», который движется быстрее скорости света.
Таким образом, корабль остается неподвижным в нормальном пространстве-времени в этом «пузыре», не подвергаясь деформациям и избегая нарушений универсального предела скорости света.
«Вместо того чтобы плыть в толще воды нормального пространства-времени, — говорит Дэвис, — двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны».
Есть тут и определенный подвох. Для реализации этой затеи необходима экзотическая форма материи, обладающая отрицательной массой, чтобы сжимать и расширять пространство-время.
«Физика не содержит никаких противопоказаний относительно отрицательной массы, — говорит Дэвис, — но никаких ее примеров нет, и мы никогда не встречали ее в природе».
Существует и другой подвох. В опубликованной в 2012 году работе исследователи из Университета Сиднея предположили, что «пузырь искривления» будет накапливать заряженные высокой энергией космические частицы, поскольку неизбежно начнет взаимодействовать с содержимым Вселенной.
Некоторые частицы будут проникать внутрь самого пузыря и накачивать корабль радиацией.
Есть ли туалет на МКС?
Туалет на орбите — дело не простое.
В первое время существования Международной космической станции астронавты и космонавты использовали и делились одним и тем же оборудованием, аппаратурой, едой и даже туалетами. Все начало меняться примерно в 2003 году, после того, как Россия стала требовать от других стран оплату за то, что их астронавты пользуются их оборудованием. В свою очередь другие страны стали требовать оплаты с России за то, что ее космонавты пользуются их оборудованием.
Ситуация накалилась в 2005 году, когда Россия стала брать с NASA деньги за доставку американских астронавтов на МКС. США взамен запретили российским астронавтом использовать американское оборудование, аппаратуру и туалеты.
В данный момент на МКС находится 3 санузла. Два стационарных и один переносной. Один из них (в американском секторе) оснащен системой регенерации непитьевой воды из мочи. Этот туалет был заказан США у России за 19 миллионов долларов, т.к. разработать собственный оказалось значительно дороже.
Сам унитаз выглядит похожим на привычный нам, но оснащен специальными креплениями для ног и бедер, а так же имеет специальную воздушную систему засасывания отходов жизнедеятельности человека. Специальная пружина притягивает космонавта к унитазу, а мощный поток воздуха дает возможность не расплескать все что из него выходит. После всасывания все отходы расщепляются на кислород и воду, а затем запускаются в замкнутый цикл космической станции.
Так выглядит туалет на МКС
Релятивистское замедление времени
Смысл этого эффекта заключается в том, что в движущемся теле все физические процессы проходят медленнее. Классическим примером этого явления является «сценарий близнецов». Представим, что один близнец летит на космическом корабле со скоростью, близкой к скорости света, а другой остается на Земле. Когда близнец-космонавт вернется на Землю, постаревшим всего на год или на два, он обнаружит, что его брат стал старше на несколько десятилетий.
Конечно, никто не проводил этот эксперимент в реальной жизни, но есть доказательства тому, что так все и произойдет. Когда ученые запустили атомные часы на орбиту, оставив при этом идентичные часы на Земле, они вернулись, двигаясь с некоторым отставанием от земных.
Пример
Пример не означает, что человек в ракете почувствует серьезную разницу времени в космосе и на Земле. Его привычные действия не станут медленными, они будут идти привычным образом.
Для человека с Земли это, конечно, будет восприниматься иначе, если он сможет увидеть другого в это время в ракете.
Несмотря на это, объект в ракете также будет думать, что исчисляется период на Земле очень медленно, если бы он мог увидеть часы там.
Как идет время в космосе относительно Земли? Ведь не все люди ощущают разницу. Дело в том, что человек в ракете ощущает время относительно самого себя, поэтому чувствует какие-то изменения. Ему кажется, что скорость течения его времени гораздо больше. Также это обусловлено серьезным ускорением у ракеты, из-за чего агрегат движется не линейно, как Земля. Соответственно, система отсчета не является равноправной в обеих точках. Именно по этой причине человек в космосе считает, что он движется быстрее, а земные жители почти не замечают разницы.
А теперь в космос
Астронавты, в зависимости от средства передвижения, также испытывали довольно высокие перегрузки — от трех до пяти G — во время взлетов и при возвращении в плотные слои атмосферы соответственно.
Эти перегрузки переносятся сравнительно легко, благодаря разумной идее пристегивать космических путешественников к креслам в положении лежа лицом по направлению полета.
По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов.
Если перегрузки не будут представлять собой проблему для длительных экспедиций на кораблях «Орион», то с мелкими космическими камнями – микрометеоритами – все сложнее.
Image caption
Для защиты от микрометеоритов «Ориону» понадобится своего рода космическая броня
Эти частицы размером с рисовое зернышко могут развивать впечатляющие и при этом разрушительные скорости до 300 тысяч км/час. Для обеспечения целостности корабля и безопасности его экипажа «Орион» оснащен внешним защитным слоем, толщина которого варьируется от 18 до 30 см.
Кроме того, предусмотрены дополнительные экранирующие щиты, а также используется хитроумное размещение оборудования внутри корабля.
«Чтобы не лишиться полетных систем, жизненно важных для всего космического корабля, мы должны точно рассчитывать углы подлета микрометеоритов», — говорит Джим Брей.
Будьте уверены: микрометеориты – не единственная помеха для космических экспедиций, во время которых высокие скорости полета человека в безвоздушном пространстве будут играть все более важную роль.
В ходе экспедиции к Марсу придется решать и другие практические задачи, например, по снабжению экипажа продовольствием и противодействию повышенной опасности раковых заболеваний из-за воздействия на человеческий организм космической радиации.
Сокращение времени в пути снизит остроту таких проблем, поэтому быстрота перемещения будет становиться все более желаемой.
Важность теории Эйнштейна
Вначале Эйнштейн назвал свою работу «К электродинамике движущихся тел». Теорией относительности она стала позже — когда научный мир, ознакомившийся с ней, сделал выводы, касающиеся «относительного» положения тел в пространстве.
Так, человек, находящийся на борту судна, к примеру на его палубе, бросающий камень по направлению к носовой части, не заметит разницы для себя, если корабль плывет или остается неподвижным. Объясняется феномен тем, что по отношению к кораблю местоположение человека всегда остается неизменным.
За десятилетний период с 1905 по 1915 год Эйнштейн разработал Общую теорию относительности, которая является одной из самых важных теорий в современной физике. Credit: shorts.ru.
Искривление пространства и времени как причина относительности
Рядом с таким небольшим объектом, как яблоко, искривление минимально, а явные изменения происходят только в пространстве, окружающем массивные тела.
На фотографии — изображение одного квазара. Его свет, искривляется пространством вблизи массивной черной дыры (посередине) и доходит до нас в виде четырех отдельных пятен. Время рядом с черной дырой будет сильно замедлено. Credit: телескоп «Хаббл», NASA.
Земля своей массой создает гравитационное поле такой силы, что для объектов, находящихся на земной орбите, время проходит медленнее, чем на поверхности планеты.
Наличие временного несоответствия было выявлено при отправке сообщений со спутников на Землю.
Ощутимое пространственно-временное искривление возникает вблизи любых массивных тел — планет, звезд. Это было доказано опытным путем.
Свет квазара, расположенного неподалеку от мощной черной дыры, искривляется, время в той области также замедляется.
Это видно по тем пятнам, которые проявляются для земного наблюдателя через неравные временные периоды.
Причины изменения расстояний
Причина периодической смены расстояний до МКС кроется в силе трения. Частицы атмосферы воздействуют на корпус станции, происходят медленное торможение и потеря высоты. За счет двигателей приходящих кораблей орбиту увеличивают.
Ранее расстояние от Земли до орбиты МКС варьировалось от 330 до 350 км. Выше ее не могли поднять по причине неспособности американских шаттлов улететь дальше этого расстояния от Земли.
Локальная смена дистанции связана с космическим мусором. Чтобы избежать столкновений, ведется наблюдение в режиме онлайн за передвижением отработанных элементов летательных аппаратов. Если появляется угроза удара, экипаж станции выполняет маневр уклонения. Двигатели дают импульс, который выводит МКС на более высокую орбиту.
Суборбитальная гонка миллиардеров
На пятки Space Adventures и «Роскосмосу» наступают две крупные компании, принадлежащие миллиардерам, решившим устроить большую космическую гонку. Компания Virgin Galactic Ричарда Брэнсона предлагает желающим отправиться в суборбитальный полет. По заявлению самого бизнесмена, не менее 500 будущих астронавтов уже приобрели билеты в этот космический тур. Что же предлагает Брэнсон своим клиентам?
«За сравнительно небольшие деньги – $250 тыс. с человека – самолет-носитель поднимает ракетоплан, вмещающий 6 туристов, на определенную высоту. Затем ракетоплан «отстыкуется» и на ракетных двигателях устремляется прямо в космос на высоту 100 км над уровнем моря (условно именно с этой высоты начинается космос). Непродолжительное время путешественники могут любоваться космическими видами, а когда ракетоплан «падает» вниз, они на 5 минут попадают в состояние невесомости», – рассказывает Виталий Егоров.
Весьма перспективную идею предлагает также компания Blue Origin, владельцем которой является основатель Amazon.com Джефф Безос. Космическая система от Blue Origin состоит из ракеты-носителя, которая «запускает» в космическое пространство управляемую капсулу, рассчитанную также на 6 человек. Цена такого полета, по разным оценкам, может варьироваться в пределах от $100 тыс. до $200 тыс.
«Blue Origin сейчас ближе всех к тому, чтобы реализовать задуманное. Ракеты у них уже есть, капсулы они тоже делают. Вероятно, в ближайшие 2 года они отправят в космос тестовых пилотов, а затем начнут продавать билеты для туристов», – отмечает пресс-секретарь компании «Даурия Аэроспейс».
К слову, нечто подобное собирается осуществить и российская частная компания «КосмоКурс».
«Только лететь они планируют в 1,5 раза выше – на высоту 180–220 км. Путешествие должно продлиться 15 минут, из них в невесомости – 5–6 минут. В корабле при этом смогут находиться до 6 туристов. Правда пока у «КосмоКурса» только красивые картинки и пара инженеров, которые все это придумывают. Тем не менее они заявили, что производство космических кораблей должно начаться в 2018 году, а первые коммерческие полёты намечены на 20-е годы», – рассказывает Егоров.
На каких аппаратах осуществляются полеты
За всю историю освоения космоса на Луну летали многократно. Первым аппаратом, который отправился в сторону спутника, была советская межпланетная станция «Луна-1». Она пролетела в 6 тыс. км от его поверхности.
Удачными были полеты серий таких аппаратов:
- «Пионер»;
- «Луна»;
- «Аполлон»;
- «Рейнджер»;
- «Зонд»;
- «Сервейер»;
- «Эксплорер»;
- «Клементина»;
- Hiten;
- Lunar Prospector;
- «Смарт»;
- «Кагуя»;
- «Чанъэ».
Запуск автоматических межпланетных станций «Луна» производился 33 раза, из них удачными оказались только 16. В рамках миссии «Аполлон» было запущено 15 космических кораблей с астронавтами.
Самым технологичным считается полет на аппарате EKA SMART-1 с ионным двигателем. Он был запущен в сентябре 2003 г., а цели достиг спустя 410 дней. За это время было использовано всего 82 кг топлива.
Главной целью миссий SMART является тестирование новых технологий, которые будут использоваться на более крупных проектах. Credit: commons.m.wikimedia.org.
Необходимая скорость
После достижения аппаратом 2-й параболической (космической) скорости двигатели отключаются, в разреженном пространстве он может лететь за счет инерции. Но при приближении к Луне скорость увеличивается за счет гравитации
На этом этапе важно начать торможение, иначе запущенный космический объект разобьется о поверхность Луны
Впервые развить вторую параболическую скорость удалось советскому аппарату «Луна-1». Рекордом считается скорость спутника «Плутон». При запуске ему придали ускорение 58 тыс. км/ч, чтобы он смог преодолеть земную гравитацию. Это позволило сократить сроки полета к Луне до минимума.
Аппарат «Луна-1» зарегистрировал внешний радиационный пояс нашей планеты и установил, что Луна не обладает сколько-нибудь мощным магнитным полем. Credit: mirkosmosa.ru.
Технические характеристики
В приборном отсеке поддерживают такую температуру, при которой все устройства могут работать без сбоев. На аппаратах устанавливают бортовую астроинерциальную систему навигации, астрокорректор для сбора и обработки полученных астрономических данных, гиродины для коррекции функционирования двигателей.
Американские аппараты «Аполлон» отличались от беспилотных кораблей, их использовали для полетов астронавтов в космос. Состояли корабли серии «Аполлон» из командного и служебного отсеков, лунного модуля и переходников крепления.
Ракета-носитель «Сатурн-5», предназначавшаяся для высадки людей на лунной поверхности, входила в миссию «Аполлон-11» и состояла из 3 ступеней, в каждой из которых было горючее и жидкий кислород в качестве окислителя.
Время работы двигателей первой ступени — 160 секунд. Она разгоняла аппарат до 2,7 км/с и на высоте 100 км от поверхности Земли падала в океан.
На дистанцию 185 км ракету выводила вторая ступень. Время ее работы — 6 минут, за указанный промежуток аппарат достигал скорости 6,84 км/с. Запуск объекта на околоземную орбиту и на траекторию к Луне осуществлялся путем 2-этапного запуска третьей ступени.
Ракета «Сатурн-5» Аполлона-11 стартовала с космодрома Кеннеди 16 июля 1969, корабль достиг Луны за 3 дня. Credit: Getty-Contributor/NASA.
Практический пример
Существует доказательство того, что для человека, летящего самолетом, время течет медленнее, чем для людей, которые находятся на Земле в состоянии покоя. Но этой разницы никто не почувствует, ведь она составит не более миллиардной доли секунды.
Ситуация меняется, когда скорость движущегося объекта многократно увеличивается.
Так, ракета, летящая со скоростью света, способна за 1 год преодолеть расстояние, составляющее 100 и более лет по земным меркам. Для самого космонавта, находящегося внутри такой ракеты, минутные стрелки двигались бы так же, как и всегда, — замедление заметили бы только земляне, каким-либо образом увидевшие часы, установленные в кабине корабля.
С другой стороны, космонавт, в этот момент посмотревший из иллюминатора на Землю и увидевший на ее поверхности часы, обратил бы внимание на их замедленный ход. Несмотря на это, в действительности замедление возникает только у космонавта
Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением
Несмотря на это, в действительности замедление возникает только у космонавта. Это связано с большой скоростью летящей ракеты и тем, что точки отсчета для корабля и планеты остаются неравноправными, ведь Земля постепенно передвигается по прямой траектории, а летательный аппарат перемещается с ускорением.