Солнечная система

Место Земли в Солнечной системе

Более удачного положения, чем то, что занимает Земля, придумать невозможно. Участок нашей Галактики довольно спокойный. Солнце обеспечивает постоянное, равномерное свечение. Оно выделяет ровно столько тепла, излучения и энергии, сколько требуется для зарождения и развития жизни.

Саму же Землю словно продумали заранее:

  • Идеальный состав атмосферы, и геологическое строение.
  • Нужный фон радиации и температурный режим.
  • Наличие воды с её удивительными свойствами.

Присутствие Луны, именно такой массы и на таком расстоянии, как это требуется. Есть ещё очень много совпадений, имеющих решающее значение для благоприятной жизни на планете. И нарушение практически любого из них сделало бы маловероятным возникновение и существование жизни.

Жизнь в Солнечной системе

Высказывались предположения, что жизнь в Солнечной системе когда-то существовала за пределом Земли, а может быть, существует и сейчас. Появление космической техники позволило приступить к прямой проверке этой гипотезы. Меркурий оказался слишком горяч и лишенным атмосферы и воды. На Венере тоже очень жарко – на ее поверхности плавится свинец. Возможность жизни в верхнем слое облаков Венеры, где условия гораздо мягче, пока не более чем фантазия. Луна и астероиды выглядят совершенно стерильными.

Большие надежды возлагались на Марс. Замеченные в телескоп 100 лет назад системы тонких прямых линий – «каналов» – дали тогда повод говорить об искусственных ирригационных сооружениях на поверхности Марса. Но теперь мы знаем, что условия на Марсе неблагоприятны для жизни: холодно, сухо, очень разреженный воздух и, как следствие, сильное ультрафиолетовое излучение Солнца, стерилизующее поверхность планеты.

Правда, есть признаки того, что климат Марса существенно менялся и, возможно, когда-то был более благоприятным для жизни. Известно, что в далеком прошлом на поверхности Марса была вода, поскольку на детальных изображениях планеты видны следы водной эрозии, напоминающие овраги и сухие русла рек.

Иллюстрация на тему «Есть ли жизнь на Марсе?»

Хотя в атмосферах планет-гигантов много органических молекул, трудно поверить, что при отсутствии твердой поверхности там может существовать жизнь. В этом смысле значительно интереснее спутник Сатурна Титан, у которого есть не только атмосфера с органическими компонентами, но и твердая поверхность, где могут скапливаться продукты синтеза. Правда, температура этой поверхности (90 К) скорее подходит для сжижения кислорода

Поэтому внимание биологов больше привлекает спутник Юпитера Европа, хотя и лишенная атмосферы, но, по-видимому, имеющая под своей ледяной поверхностью океан жидкой воды

Некоторые кометы почти наверняка содержат сложные органические молекулы, образовавшиеся еще в эпоху формирования Солнечной системы. Но трудно вообразить себе жизнь на комете. Итак, пока у нас нет доказательств, что жизнь в Солнечной системе существует где-либо за пределом Земли.

История небулярной гипотезы

Впервые идея о том, что Солнечная система образовалась из туманности, была предложена в 1734 году шведским ученым и теологом Эммануилом Сведенборгом. Иммануил Кант, знакомый с работой Сведенборга, занялся дальнейшим развитием теории и опубликовал результаты в своей работе «Всеобщая естественная история и теория неба» в 1755 году. В ней он заявлял, что газовые облака (туманности) медленно вращаются, постепенно разрушаются и под действием гравитации сжимаются, формируя звезды и планеты.

Аналогичная, но менее детальная модель формирования была предложена Пьером-Симоном Лапласом и описана в труде «Изложение системы мира», который был опубликован в 1796 году. Лаплас теоретизировал на тему того, что первоначально Солнце имело атмосферу, расширенную на всю Солнечную систему, и в какой-то момент это «протозвездное облако» начало охлаждаться и уменьшаться. С увеличением скорости вращения облака оно выбросило излишнюю материю, из которой впоследствии сформировались планеты.

Туманность Sh 2-106. Компактная область звездообразования в созвездии Лебедя

Небулярная модель Лапласа получала широкое признание в течение 19-го века, хотя и содержала некоторые явные нестыковки. Основной вопрос вызывало угловое распределение импульса между Солнцем и планетами, которое небулярная теория не объясняла. Помимо этого, шотландский ученый Джеймс Клерк Максвелл (1831–1879) утверждал, что разность скорости вращения между внешней и внутренней частью протопланетарного диска не позволила бы материи накапливаться. Кроме того, теория была не принята также и астрономом сэром Дэвидом Брюстером (1781–1868), который однажды сказал:

К концу 20-го века модель Лапласа утратила доверие в лице ученых и заставила последних начать поиск новых теорий. Началось это, правда, не раньше самого конца 60-х годов, когда появился самый современный и самый широко признанный вариант небулярной гипотезы — модель солнечного небулярного диска. Заслуга принадлежит советскому астроному Виктору Сафронову и его книге «Эволюция допланетного облака и образование Земли и планет» (1969 год). В этой книге описаны практически все основные вопросы и загадки процесса планетарного формирования, и что важнее всего — ответы на эти вопросы и загадки четко сформулированы.

Например, модель допланетного облака успешно объясняет появление аккреционных дисков вокруг молодых звездных объектов. Множественные симуляции также показали, что аккреция вещества в этих дисках ведет к формированию нескольких тел размером с Землю. Благодаря книге Сафронова вопрос происхождения планет земной группы (или землеподобных, если хотите) можно считать решенным.

Несмотря на то, что изначально модель допланетного облака применялась только в отношении Солнечной системы, многие теоретики считают, что ее можно использовать в качестве универсальной системы мер для всей Вселенной. Поэтому ее даже сейчас нередко используют для объяснения процесса формирования многих экзопланет, которые были нами найдены.

Солнце

5 млрд. лет назад
после гибели гигантской звезды произошёл взрыв сверхновой. Взрывная волна
прошла к водородному облаку. Облако распалось, образуя кольца газа и пыли. В
его центре зажглось ядерное пламя – новая 
звезда – Солнце. А из частиц газа и пыли сформировались 9 планет.

Солнечное
пространство – Гелиосфера – по форме похожа на пузырь, за пределами которого –
межзвёздное пространство. Это пространство, в котором плазма солнечного ветра движется со сверхзвуковой скоростью относительно Солнца. Первые 10 млрд км это скорость примерно миллион км/час. Далее, сталкиваясь с межзвёздной средой, скорость плазмы уменьшается. Это происходит за Границей ударной волны. Граница за которой уравновешивается давление солнечного ветра и межзвёздной среды называется Гелиопаузой. За границей Головной ударной волны начинается межзвёздное пространство.

Вся энергия,
получаемая на земле – это энергия Солнца.

Внутри Солнца при
температуре 15 млн. градусов протекает термоядерная реакция превращения
водорода в гелий. Каждую секунду Солнце теряет 4 млн. тонн своей массы, которая
высвобождается в виде энергии. Носитель этой энергии – фотон. Это безмассовая
элементарная частица – квант электромагнитного излучения. В вакууме его скорость равна скорости света. Из-за высокой плотности и активности солнечного вещества фотон от ядра к поверхности Солнца прорывается несколько тысяч лет, а с поверхности до Земли долетает за 8 минут.

Состав Солнца
учёные узнали по анализу спектра солнечного света. Оно содержит 73% водорода,
24% гелия, остальное частицы других элементов.

Фотосфера –
поверхность Солнца её температура 6 тыс. градусов. Она покрыта пузырями
нагретого газа. Каждый пузырь размером с Техас. Так называемые пятна на солнце
это участки с более низкой температурой. Размеры пятен больше размера Земли. Образуются
пятна за 10 дней и исчезают за 2 недели. Чем больше магнитная активность Солнца,
тем больше на нём пятен, так как в этих местах проходят силовые линии, которые
создаются газами и находятся под поверхностью. Поверхность вращается с
различной скоростью. На экваторе один оборот происходит за 26 дней, а на
полюсах за 37. Это искажает магнитное поле и генерирует энергию. Солнечные
вспышки высвобождают энергию 10 млн. водородных бомб.

Как поверхность, так и внутреннее вещество Солнца постоянно перемещаются, вызывая при этом «солнечные ветры» – вспышки электро-магнитых излучений.

Каждые 11 лет
магнитные полюса меняются. В середине этих циклов энергия Солнца максимальна.

Над  фотосферой – внутренняя атмосфера Солнца –
хромосфера, которую образуют вспышки – газовые дуги вокруг магнитных силовых
линий. Высота дуг – 50 тыс. км. Разрываясь, дуги образуют струи высотой 100
тыс. км (для сравнения средний диаметр Земли менее 13 тыс. км).

Внешняя атмосфера
Солнца – корона – видна во время полного солнечного затмения. Когда Луна
заслоняет Солнце. Температура короны достигает 2 млн. градусов. Корона отражает
колебания на поверхности Солнца – вспышки короны – следствие выбросов изнутри.
Осколки сильных выбросов – наэлектризованные частицы Солнца – отлетают в
космическое пространство на миллионы километров. Их скорость 400 – 800 кмсек в зависимости от активности Солнца. Землю они достигают за 4 дня.
Потоки таких частиц называют – солнечный ветер. Реакция их с внешней атмосферой
Солнца видна на Земле как полярное сияние. Через атмосферу они не проходят, благодаря
магнитному полю Земли – оно их отталкивает. И только на полюсах силовые линии
проводят их к планете – загораются огни полярных сияний.

Солнце пульсирует
и меняет форму.

У полюсов возникают
торнадо величиной с Землю. Скорость их вращения 500 тыс. кмчас.

Через 5 млрд. лет
Солнцу будет не хватать водорода. Оно начнёт расширяться. Увеличившись в 200
раз, станет красным гигантом. Ближайшие планеты – Меркурий, Венера и Земля –
погибнут. Затем, выдыхая из себя дым, Солнце будет колебаться. Останется только
раскалённое ядро, которое сократится до размера Земли – Солнце превратится в
белый карлик. Когда угаснет и ядро, Солнце станет чёрным карликом. Из планет Солнечной
системы уцелеет только Марс.

Изображение с сайта 

Интересные факты о звездах

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Источники

  • http://kosmos-gid.ru/solar_system/solnce/http://www.examen.ru/add/manual/school-subjects/natural-sciences/astronomy/solncze-blizhajshaya-zvezda/izluchenie-solnczahttp://solarsoul.net/solnce-kak-istochnik-energhttp://www.examen.ru/add/manual/school-subjects/natural-sciences/astronomy/solncze-blizhajshaya-zvezda/evolyucziya-solnczahttp://100facts.ru/fakty-o-solnce.htmlhttps://ru.wikipedia.org/wiki/Солнце
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector