Солнечная энергетика сегодня и перспективы её дальнейшего развития
Содержание:
- Как применяется на Земле
- Перспективы использования
- Солнечная электроэнергетика
- Производство электроэнергии
- Использование солнечной энергии в химическом производстве
- Достоинства и недостатки
- Использование солнечной энергии в быту
- Архитектура и городское планирование
- Плюсы и минусы солнечных электростанций
- Сферы применения солнечной энергетики
- Солнечная кухня
- Солнечный вакуумный коллектор
- Сельское хозяйство и растениеводство
- Как можно оценить величину солнечной энергии
- Основные преимущества
- Перспективы использования
- Производство электроэнергии
Как применяется на Земле
Вся энергия, которая циркулирует действует по-разному. Из всей солнечной энергии, вырабатываемой Солнцем, только 70% достигает поверхности нашей планеты каким-то образом. Как только эти 70% достигают Земли она движется в различных формах. Большая часть на потребление энергии на планете получается от нашей звезды и только 0,03% поступает из других источников. Это означает, что Солнце источник жизни на Земле, так как оно излучает наиболее доминирующий поток.
Всего на Землю «доходит» 174 000 ТВт (тераватт 10 * 10 в 11 степени ) – это примерно работа произведенная сжиганием 4 млн тонн нефти в секунду. Это небольшая часть из 410 000 000 000 000 ТВт которое выпускает наша звезда во всех направлениях, но по-прежнему много.
Таким образом, роль солнца в жизни человека основополагающая.
Хотя поток солнечной энергии является наиболее доминирующим потоком, это не единственный источник на планете. Энергия от использования ядерного топлива, а также от приливов и тепловая из центра Земли все способствует общим ресурсам. Хотя эти потоки вносят гораздо меньший вклад, они по-прежнему жизненно важны для обеспечения энергетического баланса Земли.
Перспективы использования
Основная статья: Солнечная энергетика
Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.
Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 (ЭДж) в год. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год. Фотосинтез забирает около 3 000 ЭДж в год на производство биомассы. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд.
«‘Годовое поступление солнечного излучения и потребления энергии человеком»‘1 | ||
---|---|---|
Солнце | 3 850 000 | |
ветер | 2 250 | |
Потенциал биомассы | ~200 | |
Мировое потребление энергии2 | 539 | |
Электроэнергия2 | ~67 | |
1 Энергию подано в эксаджоулях 1 ЭДж = 1018Дж = 278 ТВт/ч 2 Потребления по состоянию на 2010 год |
Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.
Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтации, которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.
Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши.
Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.
Активные солнечные технологии используют фотовольтонику, концентрированную солнечную энергию (англ.), солнечные коллекторы, насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии.
2000 года Программа развития ООН, Департамент по экономическим и социальным вопросам ООН и Мировой энергетический совет опубликовали оценку потенциала солнечной энергии, которую человечество может добывать, приняв во внимание такие факторы, как инсоляция, облачность и доступна для использования поверхность суши. Оценка показала, что глобальный потенциал солнечной энергии составляет 1,575–49,837 ЭДж на год «(см
таблицу ниже)».
Регион | Северная Америка | Латинская Америка и Карибы | Западная Европа | Центральная и Восточная Европа | Страны бывшего Советского Союза | Ближний Восток и Северная Африка | Sub-Saharan Африка | Pacific Asia | Южная Азия | Centrally planned Asia | Pacific OECD |
---|---|---|---|---|---|---|---|---|---|---|---|
Минимум | 181,1 | 112,6 | 25,1 | 4,5 | 199,3 | 412,4 | 371,9 | 41,0 | 38,8 | 115,5 | 72,6 |
Максимум | 7 410 | 3 385 | 914 | 154 | 8 655 | 11 060 | 9 528 | 994 | 1 339 | 4 135 | 2 263 |
В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.
Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.
Солнечная электроэнергетика
Основная статья: Солнечная генерация
Годовая выработка электроэнергии в мире на СЭС | |||
---|---|---|---|
Год | Энергия ГВт·ч | Годовой прирост | Доля от всей |
2004 | 2,6 | ― | 0,01 % |
2005 | 3,7 | 42 % | 0,02 % |
2006 | 5,0 | 35 % | 0,03 % |
2007 | 6,8 | 36 % | 0,03 % |
2008 | 11,4 | 68 % | 0,06 % |
2009 | 19,3 | 69 % | 0,10 % |
2010 | 31,4 | 63 % | 0,15 % |
2011 | 60,6 | 93 % | 0,27 % |
2012 | 96,7 | 60 % | 0,43 % |
2013 | 134,5 | 39 % | 0,58 % |
2014 | 185,9 | 38 % | 0,79 % |
2015 | 253,0 | 36 % | 1,05 % |
2016 | 301,0 | 33 % | 1,3 % |
Источник — BP Statistical Review of World Energy, 2015, 2017 |
В 1985 году все установленные мощности мира составляли 0,021 ГВт.
В 2005 году производство фотоэлементов в мире составляло 1,656 ГВт.
На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составляла лишь около 0,1 % общемировой генерации электроэнергии.
В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт.
Крупнейшие производители фотоэлементов в 2012 году:
-
Yingli — 2300 МВт
-
First Solar — 1800 МВт
-
Trina Solar — 1600 МВт
-
Canadian Solar — 1550 МВт
-
Suntech — 1500 МВт
-
Sharp — 1050 МВт
-
Jinko Solar — 900 МВт
-
SunPower — 850 МВт
- REC Group — 750 МВт
-
Hanwha SolarOne — 750 МВт
В 2013 году глобально было установлено 39 ГВт фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок на начало 2014 года оценивалась в 139 ГВт.
Лидером по установленной мощности является Евросоюз, среди отдельных стран — Китай. По совокупной мощности на душу населения лидер — Германия.
В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии.
В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок.
В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово, в результате чего его суммарная установленная мощность возросла до 100 МВт. Солнечный парк Перово в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков — 80-мегаваттная электростанция Охотниково в Сакском районе Крыма.
В 2018 г. Саудовская Аравия заявила о намерении построить крупнейшую в мире солнечную электростанцию мощностью 200 ГВт.
Рабочие места
В середине 2011 года в фотоэлектрической промышленности Германии было занято более 100 тысяч человек. В солнечной энергетике США работали 93,5 тысяч человек.
Перспективы солнечной электроэнергетики
В мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50 %. Полученная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20—25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20—25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно.
Перспективы использования солнца для получения электричества ухудшаются из-за высоких издержек. Так, СТЭС Айвонпа обходится вчетверо дороже, а генерирует гораздо меньше электроэнергии, по сравнению с газовыми электростанциями. По подсчётам экспертов, в будущем электроэнергия, вырабатываемая этой станцией, будет стоить вдвое дороже, чем получаемая от обычных источников энергии, а расходы, очевидно, будут переложены на потребителей.
Тем не менее, по прогнозам, себестоимость генерации электроэнергии солнечными электростанциями к 2020 году снизится до себестоимости генерации с использованием ископаемого топлива и переход к использованию солнечных электростанций станет экономически выгодным.
Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры порядка 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость не линейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей.
Производство электроэнергии
Основная статья: Солнечная энергетика
Солнечная энергетика работает за счет преобразования солнечного света в электроэнергию. Это может происходить или непосредственно, с использованием фотовольтаики, или косвенно, с использованием систем концентрированной солнечной энергии (англ.), в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект.
Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно.
Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS (англ.) в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (англ.) (150 МВт) и СЭС Андасол (англ.) (100 МВт), обе в Испании. Среди крупнейших электростанций на фотовольтаїці (англ.): Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии. Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на фотовольтаїці, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах.По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети.
Использование солнечной энергии в химическом производстве
Солнечная энергия может применяться в различных химических процессах. Например:
- Израильский Weizmann Institute of Science в 2005 году испытал технологию получения не окисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.
- Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м². В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг в год (около 10,4 кг в день).
Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.
Достоинства и недостатки
Достоинства
- Перспективность, доступность и неисчерпаемость источника энергии в условиях постоянного роста цен на традиционные виды энергоносителей.
- Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).
Недостатки
- Зависимость от погоды и времени суток.
- Сезонность в средних широтах и несовпадение периодов выработки энергии и потребности в энергии. Нерентабельность в высоких широтах, необходимость аккумуляции энергии.
- При промышленном производстве — необходимость дублирования солнечных энергетических установок традиционными сопоставимой мощности.
- Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).
- Необходимость периодической очистки отражающей/поглощающей поверхности от загрязнения.
- Нагрев атмосферы над электростанцией.
- Необходимость использования больших площадей.
- Сложность производства и утилизации самих фотоэлементов в связи с содержанием в них ядовитых веществ, например, свинец, кадмий, галлий, мышьяк и т. д..
Использование солнечной энергии в быту
Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками. Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей. Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.
Солнечная энергия – это отличный источник для таких процессов:
- Пассивный обогрев и охлаждение дома. Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.
- Нагрев воды с помощью солнечной энергии. Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.
- Освещение улиц. Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.
Архитектура и городское планирование
Основные статьи: Пассивный солнечный дизайн зданий и Городской тепловой остров
2007 года Дармштадтский технический университет выиграл Solar Decathlon в Вашингтоне со своим пассивным домом, спроектированным для влажного и горячего субтропического климата.
Наличие солнечного света влияла на дизайн зданий от самого начала истории архитектуры. Впервые продвинутые методы солнечной архитектуры и городского планирования ввели древние греки и китайцы, которые ориентировали свои дома на юг, чтобы обеспечить их освещением и теплом.
Среди общих характеристик пассивной солнечной архитектуры (англ.): благоприятная ориентация зданий относительно Солнца, компактные пропорции (малое отношение площади поверхности к объему), выборочное затемнение (навесы) и тепловая масса (англ.). Когда эти свойства удачно подобраны с учетом местного климата, то это обеспечивает хорошее освещение помещений и позволяет оставаться в комфортном диапазоне температур. Дом мегаронного типа Сократа — является классическим примером пассивной солнечной архитектуры. На нынешнем этапе солнечного дизайна применяют компьютерное моделирование с помощью которой связывают между собой дневное освещение (англ.), а также системы солнечного обогрева и вентиляции в интегрированный пакет солнечного дизайна. Активное солнечное оборудование, такое как насосы, вентиляторы и переключаемые окна может дополнить пассивный дизайн и улучшить показатели работы системы.
Городской тепловой остров (МТО) — это городской район, где температура выше, чем в окружающих сельских местностях. Повышение температуры является следствием применения таких материалов как асфальт и бетон, которые лучше впитывают солнечное излучение, поскольку имеют ниже альбедо и выше теплоемкость, чем в окружающей среде. Чтобы непосредственно противодействовать эффекту, здания красят в белое и насаживают на улицах деревья. Согласно проекту гипотетической программы «cool communities» в Лос-Анджелеси, используя эти методы городскую температуру можно снизить примерно на 3 °C. Стоимость проекта оценивается в US$1 млрд, а общая годовая выгода может составлять US$530 млн благодаря уменьшению затрат на вентиляцию и охрану здоровья.
Плюсы и минусы солнечных электростанций
Достоинства:
- Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
- Солнечные установки достаточно безопасны в использовании.
- Подобные электростанции являются полностью автономными.
- Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
- Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
- Они не прихотливы в обслуживании и достаточно просты в использовании.
- Также для оборудования СЭС характерный долгий эксплуатационный период.
Недостатки:
- Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
- Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
- Очень высокая и малодоступная стоимость оборудования для солнечных установок.
- Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
- Значительное повышение температуры воздуха в пределах электростанции.
- Потребность в использовании местности с огромной площадью.
- Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.
Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны
Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана
https://youtube.com/watch?v=YOK0h9Ro-kM
Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.
Сферы применения солнечной энергетики
Спектр применения энергии солнца крайне широк. Уже сейчас её используют на заводах, при строительстве, успешно применяют в химической промышленности, реализуют проекты отопительных установок воды для зданий и это лишь не многие примеры. Многие считаю, что применение солнечной энергетики — это процесс сравнительно недавний. Но, уже начиная с 1955 года, эти методы успешно применялись в строительстве автомобилей. Тогда и был выпущен первый прародитель нынешних электрокаров, которые успешно производят такие авто-гиганты как Honda, Toyota, Mitsubishi и другие.
Уже сегодня по всему миру в обиход входят установки при помощи, которых можно нагревать воду дома, готовить пищу и освещать жилые помещения. Ярким примером могут служить солнечные печи, состоящие из фольгированного картона, которые по инициативе ООН были предоставлены беженцам в разных странах переживающих сложную политическую обстановку. А на территории Узбекистана, например находится крупнейшая печь, успешно используемая при плавке различных металлов и термической обработке, но это уже совсем иные масштабы в отличие от бытовых.
Самыми необычными примерами где использовалась энергия, полученная от солнца являются:
- Футляр с фотоэлементом для телефона, который одновременно является и зарядкой;
- Сумка для похода (рюкзак), на задней стороне которой прикреплена солнечная панель, при помощи неё можно зарядить планшет, телефон, да и вообще любое устройство средних размеров;
- Одежда с применением специального материала, который генерирует энергию от солнечного света, а затем при помощи специальных устройств направляет её в подключенные устройства.
Солнечная кухня
Солнечная жаровня
Основная статья: Солнечная печь
Солнечные коллекторы могут применяться для приготовления пищи. Температура в фокусе коллектора достигает 150 °С. Такие кухонные приборы могут широко применяться в развивающихся странах. Стоимость материалов необходимых для производства простейшей «солнечной кухни» составляет $3—$7.
Традиционные очаги для приготовления пищи имеют термическую эффективность около 10 %. В развивающихся странах для приготовления пищи активно используются дрова. Использование дров для приготовления пищи приводит к массированной вырубке лесов и вреду для здоровья. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн тонн СО2. В Уганде среднее домохозяйство ежемесячно потребляет 440 кг дров. Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары, Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин.
Существуют различные международные программы распространения солнечных кухонь. Например, в г. Финляндия и Китай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО2 на 1,7 млн тонн в 2008—2012 гг. В будущем Финляндия сможет продавать квоты на эти выбросы.
Солнечный вакуумный коллектор
Далее ставки начинают повышаться. Речь к сожалению идёт о цене. Стоимость их довольно высока, хотя и КПД тоже достаточно большой. Его невозможно сделать самому, потому что в производстве используется высокопрочное боросиликатное стекло с пониженным содержанием металла.
Для контроля за вакуумом используется бариевый газопоглотитель. Если герметичность не нарушена, то трубка имеет серебристый цвет, если же она побелела, значит нарушена целостность. Вакуумные коллекторы менее остальных зависят от погодных условий, поскольку тепловой канал отделен от атмосферы вакуумом. А вакуум как известно, отличный теплоизолятор. В плохую погоду они поглощают инфракрасное излучение, проходящее сквозь облака. Ещё один плюс в пользу такой технологии.
Сельское хозяйство и растениеводство
Подобные этой оранжерея в муниципалитете Вестланд в Нидерландах выращивают овощи, фрукты и цветы.
Сельское хозяйство и растениеводство ищут способ оптимизировать впитывание солнечной энергии для того, чтобы повысить продуктивность растений. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows и смешивания различных видов растений может повышать урожайность
Обычно солнечный свет считают избыточным ресурсом и исключения из этого правила лишь подчеркивают важность солнечной энергии для сельского хозяйства. В течение коротких growing seasons Малого ледникового периода французские и английские (англ.) фермеры использовали фруктовые стены чтобы увеличить поступления солнечной энергии
Эти стены действовали как тепловая масса и ускоряли созревание by keeping plants warm. Ранние фруктовые стены строили перпендикулярно к поверхности земли и возвращенными на юг, но со временем появились наклонные стены, которые лучше использовали солнечный свет. 1699 года, Никола Фатіо где Дьюїльє (англ.) даже предложил применять tracking mechanism, которые мог бы возвращаться в направлении солнца. Применение солнечной энергии в сельском хозяйстве кроме выращивания растений включает перекачки воды, высушивание урожая, выведение цыплят и высушивание птичьего помета. В последнее время эту технологию стали применять виноделы, которые используют энергию от солнечных панелей, чтобы обеспечить энергией винодельческие прессы.
оранжерея превращают солнечный свет в тепло, обеспечивая круглогодичное выращивание растений, которые в природе не приспособлены для этого климата. Простейшие оранжереи использовали в римские времена, чтобы круглый год выращивать огурцы для императора Тиберия. Самые современные оранжереи появились в Европе в XVI веке, чтобы хранить в них растения, которые привезли с исследовательских путешествий.
Как можно оценить величину солнечной энергии
Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.
Распределение солнечного излучения на карте планеты
Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.
Основные преимущества
Неисчерпаемость запасов энергии, которая даётся практически даром. Используемые установки полностью безопасны и автономны. Можно отметить их экономичность, поскольку покупается только оборудование установки. Кроме того, обеспечивается стабильность электроснабжения без каких-либо скачков напряжения. Дополним ещё такими показателями, как большой срок эксплуатации и простота в использовании.
Если ещё несколько лет назад в основном солнечное тепло использовалось для естественного подогрева воды под лучами солнца, то в настоящее время можно перечислить целый ряд сфер человеческой деятельности, где непосредственно применяется солнечная энергия.
Перспективы использования
Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.
Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 (Эдж) в год. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год. Фотосинтез забирает около 3 000 Эдж в год на производство биомассы. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд.
«‘Годовое поступление солнечного излучения и потребления энергии человеком»‘1 | ||
---|---|---|
Солнце | 3 850 000 | |
ветер | 2 250 | |
Потенциал биомассы | ~200 | |
Мировое потребление энергии2 | 539 | |
Электроэнергия2 | ~67 | |
1 Энергию подано в ексаджоулях 1 Эдж = 1018Дж = 278 ТВт/ч 2 Потребления по состоянию на 2010 год |
Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.
Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтації, которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.
Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши.
Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.
Активные солнечные технологии используют фотовольтаику, концентрированную солнечную энергию (англ.), солнечные коллекторы, насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии.
2000 года Программа развития ООН, Департамент по экономическим и социальным вопросам ООН и Мировой энергетический совет опубликовали оценку потенциала солнечной энергии, которую человечество может добывать, приняв во внимание такие факторы, как инсоляция, облачность и доступна для использования поверхность суши. Оценка показала, что глобальный потенциал солнечной энергии составляет 1,575–49,837 Эдж на год «(см
таблицу ниже)».
Регион | Северная Америка | Латинская Америка и Карибы | Западная Европа | Центральная и Восточная Европа | Страны бывшего Советского Союза | Ближний Восток и Северная Африка | Sub-Saharan Африка | Pacific Asia | Южная Азия | Centrally planned Asia | Pacific OECD |
---|---|---|---|---|---|---|---|---|---|---|---|
Минимум | 181,1 | 112,6 | 25,1 | 4,5 | 199,3 | 412,4 | 371,9 | 41,0 | 38,8 | 115,5 | 72,6 |
Максимум | 7 410 | 3 385 | 914 | 154 | 8 655 | 11 060 | 9 528 | 994 | 1 339 | 4 135 | 2 263 |
В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.
Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.
Производство электроэнергии
Основная статья: Солнечная энергетика
Солнечная энергетика работает за счет преобразования солнечного света в электроэнергию. Это может происходить или непосредственно, с использованием фотовольтаики, или косвенно, с использованием систем концентрированной солнечной энергии (англ.), в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект.
Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно.
Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS (англ.) в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (англ.) (150 МВт) и СЭС Андасол (англ.) (100 МВт), обе в Испании. Среди крупнейших электростанций на солнечных батареях (англ.): Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии. Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на солнечных батареях, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах. По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети.