Реферат: плазма — четвертое состояние вещества

Использование жидкой фракции в медицине

Для переливания в наше время чаще нужна не цельная кровь, а ее компоненты и плазма. Поэтому в пунктах переливания нередко сдают кровь на плазму. Получают ее из цельной крови центрифугированием, то есть отделяют жидкую часть от форменных элементов с помощью аппарата, после чего клетки крови возвращают донору. Процедура продолжается около 40 минут. Отличие от сдачи цельной крови заключается в том, что кровопотеря значительно меньше, и сдать плазму вновь можно уже через две недели, но не более 12 раз в течение года.

Из плазмы получают сыворотку крови, которую используют в лечебных целях. Она отличается от плазмы тем, что в ней нет фибриногена, при этом содержатся все антитела, которые могут противостоять возбудителям болезней. Для ее получения помещают на час в термостат стерильную кровь. Затем отслаивают образовавшийся сгусток от стенки пробирки и держат в холодильнике сутки. После этого с помощью пастеровской пипетки отстоявшуюся сыворотку сливают в стерильную емкость.

Аделина Павлова

Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)

Модели Particle-In-Cell используются для численного решения кинетических уравнений. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных квазичастиц, каждая из которых отвечает некоторому числу реальных частиц (интегралу от функции распределения по ограниченной в фазовом пространстве области). Плотности электрического заряда и тока определяются путём суммирования заряда и квазичастиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число квазичастиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек. Не стоит путать модели PIC с прямым интегрированием уравнений движения реальных частиц, из которых состоит плазма — электронов и ионов — поскольку общее число квазичастиц в PIC-моделях, как правило, на много порядков меньше.

2.3. Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит оттемпературы. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешнимэлектромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z> ni, где <Z> — среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служитьСолнце.

Другие состояния

Тёмная материя

Основная статья: Тёмная материя

Форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение. Однако возможно обнаружить присутствие тёмной материи по создаваемым ею гравитационным эффектам.

Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Сверхкритический флюид

Основная статья: Сверхкритический флюид

Состояние вещества, при котором исчезает различие между жидкой и газовой фазой. Любое вещество, находящееся при температуре и давлении выше критической точки, является сверхкритической жидкостью. Свойства вещества в сверхкритическом состоянии промежуточные между его свойствами в газовой и жидкой фазе. Так, СКФ обладает высокой плотностью, близкой к жидкости, низкой вязкостью и при отсутствии межфазных границ поверхностное натяжение также исчезает. Коэффициент диффузии при этом имеет промежуточное между жидкостью и газом значение. Вещества в сверхкритическом состоянии могут применяться в качестве заменителей органических растворителей в лабораторных и промышленных процессах. Наибольший интерес и распространение в связи с определёнными свойствами получили сверхкритическая вода и сверхкритический диоксид углерода.

Примечания

  1. Физический энциклопедический словарь. Гл. ред. А. М. Прохоров. Ред. кол. Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. М.: Сов. Энциклопедия, 1984. — С. 536
  2. RO Dendy, Plasma Dynamics.
  3. Hillary Walter, Michelle Cooper, Illustrated Dictionary of Physics
  4. Daniel Hastings, Henry Garrett, Spacecraft-Environment Interactions
Термоядерная энергетика
Базовые понятия Ядро атома Термоядерная энергия Термоядерный синтез Термоядерная электростанция Ядерная безопасность
Плазма

Магнитное содержания: Токамак Стеллараторов Левитуючий диполь Сферомак Обратная магнитная конфигурация Пинч с обратным полем Z-пинч

Магнитно-инерционный содержание : замагниченной мишень

Инерционное содержания: Лазерная Термоядерная бомба Фузор Фарнсуорт-Хиша Поливелл

Смежные понятия Критерий Лоусона Коэффициент воспроизводства термоядерной энергии Холодный синтез
Ядерная физика Физика элементарных частиц

Области активного исследования

Это — просто частичный список тем. См. список плазмы (физика) статьи. Более полный и организованный список может быть найден на науке и технике Плазмы веб-сайта.

Плазменная теория

Плазменные взаимодействия с волнами и лучами

  • Plasmas в природе
  • Ионосфера Земли

Сделайте интервалы между plasmas, например, plasmasphere Земли (внутренняя часть магнитосферы, плотной с плазмой)

Промышленный plasmas

  • Плазменные источники
  • Пыльный plasmas

Исследование шариковой ручки

Плазменные заявления

  • Магнитная энергия сплава (MFE) — токамак, stellarator, полностью изменил полевое повышение, магнитное зеркало, плотный плазменный центр
  • Инерционная энергия сплава (IFE) (также Инерционный сплав заключения — ICF)

СОРОКА (короткий для мега генератора ампера для плазменных экспериментов имплозии)

  • Пищевая промышленность (нетепловая плазма, иначе «холодная плазма»)
  • Плазменный вывоз отходов дуги, преобразуйте отходы в повторно используемый материал с плазмой.

Плазменная медицина (e. g. Стоматология)

File:Wispy ‘Плазменный Танцор’ на конечности плазмы Солнца ogv|Solar

File:Plasma Распыляя Процесс jpg|Plasma, распыляющий

Использование плазмы

Наиболее
широко плазма применяется в светотехнике
— в газоразрядных

лампах,
освещающих улицы, и лампах дневного
света, используемых в

помещениях.
А кроме того, в самых разных
газоразрядных приборах:

выпрямителях
электрического тока, стабилизаторах
напряжения, плазменных усилителях и
генераторах сверхвысоких частот (СВЧ),
счётчиках космических частиц.

Все так
называемые газовые лазеры (гелий-неоновый,
криптоновый, на

диоксиде
углерода и т. п.) на самом деле плазменные:
газовые смеси в них

ионизованы
электрическим разрядом.

Свойствами,
характерными для плазмы, обладают
электроны

проводимости
в металле (ионы, жестко закрепленные
в кристаллической

решётке,
нейтрализуют их заряды), совокупность
свободных электронов и

подвижных
«дырок» (вакансий) в полупроводниках.
Поэтому такие системы называют плазмой
твёрдых тел.

Газовую
плазму принято разделять на
низкотемпературную — до 100

тыс.
градусов и высокотемпературную — до
100 млн градусов. Существуют генераторы
низкотемпературной плазмы — плазмотроны,
в которых используется электрическая
дуга. С помощью плазмотрона можно нагреть
почти любой газ до 7000—10000 градусов
за сотые и тысячные доли секунды. С
созданием плазмотрона возникла новая
область науки — плазменная химия:
многие химические реакции ускоряются
или идут только в плазменной струе.

Плазмотроны
применяются и в горнорудной
промышленности, и для резки

металлов.

Созданы
также плазменные двигатели,
магнитогидродинамические

электростанции.
Разрабатываются различные схемы
плазменного ускорения

заряженных
частиц. Центральной задачей физики
плазмы является проблема управляемого
термоядерного синтеза.

Термоядерными
называют реакции синтеза более тяжёлых
ядер из ядер

лёгких
элементов (в первую очередь изотопов
водорода — дейтерия D и трития

Т),
протекающие при очень высоких температурах
(» 108 К и выше).

В естественных
условиях термоядерные реакции происходят
на Солнце:

ядра
водорода соединяются друг с другом,
образуя ядра гелия, при этом

выделяется
значительное количество энергии.
Искусственная реакция

термоядерного
синтеза была осуществлена в водородной
бомбе.

Применение

Наибольшее применение плазма нашла в светотехнике: в газоразрядных лампах, экранах и различных газоразрядных приборах, вроде стабилизатора напряжения или генератора сверхвысокочастотного (микроволнового) излучения. Возвращаясь к освещению – все газоразрядные лампы основаны на протекании тока через газ, что вызывает ионизацию последнего. Популярный в технике плазменный экран представляет собой набор газоразрядных камер, заполненных сильно ионизированным газом. Электрический разряд, возникающий в этом газе порождает ультрафиолетовое излучение, которое поглощается люминифором и далее вызывает его свечение в видимом диапазоне.

Устройство плазменного экрана

Вторая область применения плазмы – космонавтика, а конкретнее – плазменные двигатели. Такие двигатели работают на основе газа, обычно ксенона, который сильно ионизируется в газоразрядной камере. В результате этого процесса тяжелые ионы ксенона, которые к тому же ускоряются магнитным полем, образуют мощный поток, создающий тягу двигателя.

Наибольшее же надежды возлагаются на плазму – как на «топливо» для термоядерного реактора. Желая повторить процессы синтеза атомных ядер, протекающие на Солнце, ученые работают над получением энергии синтеза из плазмы. Внутри такого реактора сильно разогретое вещество (дейтерий, тритий или даже гелий-3) находится в состоянии плазмы, и в силу своих электромагнитных свойств, удерживается за счет магнитного поля. Формирование более тяжелых элементов из исходной плазмы происходит с выделением энергии.

Устройство термоядерного реактора

Также плазменные ускорители используются в экспериментах по физике высоких энергий.

5. Отличие от газа

Основным отличием плазмы от газа является то, что существенной частью плазмы, наряду с атомами, ионами и электронами, является электромагнитное поле. Четко определенного фазового перехода между газом и плазмой не существует. Вещество переходит в состояние плазмы из газа постепенно с повышением степени ионизации.

Присутствие зарядов существенно меняет характер взаимодействия между частицами. Атомы газа взаимодействуют между собой только в случае столкновений, когда расстояния между ними малы. Кулоновское взаимодействие зарядов действует на больших расстояниях, поэтому движение заряженных частиц в плазме коллективный — изменение положения одной частицы вызывает смещение других частиц, которые в свою очередь приводят к дальнейшему смещению еще дальнейших частиц. Эти смещения сопровождаются распространением в плазме электромагнитных волн, вызванных локальным изменением плотности заряда. Для плазмы характерны так называемые плазменные колебания — согласованное распространение в пространстве волны плотности заряда продольной электромагнитной волны. В связи с тем, что плазма состоит минимум из двух типов заряженных частиц: электронов и ионов, существуют различные моды плазменных колебаний — электронные плазменные колебания и ионные колебания, так называемый ионный звук.

На коллективные колебания в плазме существенно влияет внешняя магнитное поле, изменяя их характер, и приводя к существованию значительного числа различных типов волн. В отличие от газа плазма обладает высокой электропроводность.

Свойство Газ Плазма
Электрическая проводимость Крайне мала Например, воздух является прекрасным изолятором до тех пор, пока не переходит в состояние пламени под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр. Очень высокая

  1. Несмотря на то, что при протекании тока возникает хотя и малое падение потенциала падения потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана ..
  2. Возможность проводить токи делает плазму очень восприимчивой к воздействию магнитного поля, что приводит к возникновению таких явлений как филаментування, появление слоев и струй.
  3. Типичным является наличие коллективных эффектов, поскольку электрические и магнитные силы являются дальнего действия и намного сильнее, чем гравитационные.
Количество сортов частиц Один Газы состоят из подобных друг другу частиц, которые движутся под действием гравитации, а друг с другом взаимодействуют лишь на сравнительно небольших расстояниях. Два или три, или больше Электроны, ионы и нейтральные частицы различаются знаком електирчного заряда и могут вести себя независимо друг от друга — иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростям Максвелловской Столкновение частиц друг с другом приводит к максвелловской распределения скоростей, согласно которому очень малая часть молекул газа имеют относительно большую скорость движения. Немаксвеливський

Электрические поля имеют другое влияние на скорости частиц, чем столкновения, которые всегда ведут к максвелизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двохтемпературний распределение и убегая электроны.

Тип взаимодействий Бинарные Как правило двухчастичные столкновения, трьохчасткови столкновения крайне редки. Коллективные Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние, чем двудольные.

5.1. Минимальные размеры

Срок плазма может применяться только к макроскопической совокупности частиц в которой действуют статистические закономерности взаимокомпенсации и взаимного экранирования зарядов. Поэтому при более точном определении плазмы показывают, что совокупность частиц может считаться плазмой только при условии, если ее размеры значительно больше дебаивський радиус экранирования.

Следовательно, определение плазмы как «газообразной среды, где концентрации положительных и отрицательных зарядов практически одинаковы, а хаотическое движение частиц преобладает над упорядоченным движением их даже в электрическом поле. «- является несколько упрощенным.

1.1. Наиболее типичные формы плазмы

Наиболее типичные формы плазмы

Искусственно созданная плазма

Плазменная панель (телевизор, монитор)

Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп

Плазменные ракетные двигатели

Газоразрядная корона озонового генератора

Исследования управляемого термоядерного синтеза

Электрическая дуга в дуговой лампе и в дуговой сварке

Плазменная лампа (см. рисунок)

Дуговой разряд от трансформатора Теслы

Воздействие на вещество лазерным излучением

Светящаяся сфера ядерного взрыва

Земная природная плазма

Молния

Огни святого Эльма

Ионосфера

Языки пламени (низкотемпературная плазма)

Космическая
и
астрофизическая
плазма

Солнце и другие звезды (те, которые существуют за счет термоядерных реакций)

Солнечный ветер

Космическое пространство (пространство между планетами, звездами игалактиками)

Межзвездные туманности

2.
Свойства и параметры плазмы

Плазма обладает следующими свойствами:

Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:

, где — концентрация заряженных частиц.

Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания. Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

Фибриноген

Выступает особым белком. Он вырабатывается в печени. Основная задача заключается в том, чтобы обеспечить нормальное свертывание крови. Процесс протекает в несколько этапов.

  • Как только организму требуется закрыть рану, брешь в тканях, начинается синтез особых веществ-факторов. В том числе к ним относится и фибриноген.
  • Как только количество вещества достигает определенного значения, оно подлежит расщеплению. Здесь участвует особое соединение под названием тромбин.
  • Фибриноген разрушается и распадается на клейкие составляющие. Так называемые нити.
  • После того как фактор выпал в осадок, он приклеивается к месту поражения, тромбоцитам, обеспечивая нормальную свертываемость. Образуется тромб, который прикрывает раневую поверхность. Затем из него формируется жесткий струп.

Процесс протекает всякий раз, когда образуется область поражения. Если фибриногена недостаточно, начинаются коагулопатии. Нарушается нормальная свертываемость. Кровь становится слишком жидкой.

Аминокислоты

Выступают своего рода строительным материалом для клеток организма. Также входят в состав их стенок, обеспечивая нормальную проводимость цитоплазматической мембраны. И в то же время ее прочность и эластичность.

  • Жиры. Липиды, как и аминокислоты — это основной строительный материал. Ключевой из них — хорошо известный всем холестерин.
  • Глюкоза. Выступает питательным веществом. Работает как специальный запас. Поскольку при расщеплении выделяется большое количество энергии. Как правило, при производстве донорского материала глюкозу не удаляют, она остается на месте.
  • Гормоны. Те, что выработались в организме пациента. Выполняют роль своего рода медиаторов, веществ, передающих сигналы тканям и целым системам. Это их основная задача.
  • Минералы. Йод, железо, хлор, десятки других веществ. Как в виде законченного соединения, которое не вступает в простые реакции, так и в форме заряженных ионов. Именно последние поддерживают нормальную кислотность крови, участвуют в работе клеток, цитоплазматических мембран.

Все вещества выполняют две основных функции. Если говорить о вопросе обобщенно.

Какие именно:

  • Обеспечение правильного обмена веществ.
  • Поддержание состояние гомеостаза. Когда организм находится в равновесии, правильно работает и стабилен по отношению к самому себе.

Недостаток или избыток любого соединения сразу заканчивается нарушениями. В этом случае требуется лечение.

Высокоэнергетические состояния

Глазма

Основная статья: Глазма

Состояние адронного поля, предшествующее при столкновениях кварк-глюонной плазме. Состоит из цветных токовых трубок. Глазма является особенностью теоретической модели «конденсата цветового стекла» (англ. color glass condensate) — подхода к описанию сильного взаимодействия в условиях высоких плотностей.

Глазма образуется при столкновении адронов друг с другом (например, протонов с протонами, ионов с ионами, ионов с протонами). Считается также, что в эволюции Вселенной состояние глазмы предшествовало кварк-глюонной плазме, которая существовала в первые миллионные доли секунды сразу после Большого взрыва. Время существования глазмы — несколько иоктосекунд.

Кварк-глюонная плазма

Основная статья: Кварк-глюонная плазма

Состояние вещества в физике высоких энергий и физике элементарных частиц, при котором адронное вещество переходит в состояние, аналогичное состоянию, в котором находятся электроны и ионы в обычной плазме. Ему предшествует состояние глазмы (глазма термализуется, то есть разрушается, порождая множество хаотично движущихся кварков, антикварков и глюонов: кварк-глюонную плазму).

Плазма в полупроводниках

Рассматривая основы физики плазмы, необходимо отметить, что в полупроводниках ситуация более разнообразная. Вкратце охарактеризуем ее. Однокомпонентная плазма в этих веществах может возникнуть, если ввести в них соответствующие примеси. Если примеси легко отдают электроны (доноры), то возникают носители n-типа — электроны. Если же примеси, напротив, легко отбирают электроны (акцепторы), то возникают носители р-типа — дырки (пустые места в распределении электронов), которые ведут себя как частицы с положительным зарядом. Двухкомпонентная же плазма, образованная электронами и дырками, возникает в полупроводниках еще более простым образом. Например, она появляется под действием световой накачки, забрасывающей электроны из валентной зоны в зону проводимости. Отметим, что при определенных условиях электроны и дырки, притягивающиеся друг к другу, могут образовать связанное состояние, подобное атому водорода, — экситон, а если накачка интенсивна, и плотность экситонов велика, то они сливаются вместе и образуют каплю электронно-дырочной жидкости. Иногда такое состояние считают новым состоянием вещества.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector