Накопление энергии

Жизнь заставила копить

Мировая энергетика пытается найти другие решения по хранению энергии, более простые с инженерной точки зрения и меньшей мощности, чем ГАЭС. По прогнозам мирового аналитического агентства Navigant Research, к 2025 году суммарная установленная мощность систем накопления энергии в мире увеличится по отношению к 2016 году почти в 20 раз — до 22 ГВт (без учета ГАЭС; среднегодовой рост — 38,7%). Мировой рынок систем накопления энергии к 2025 году достигнет $75 млрд, если брать в расчет накопители на электротранспорте.

За последние несколько лет в мире произошло два события, усилившие значимость систем хранения в энергетике. Во-первых, увеличение мощности ВИЭ привело к проблемам с регулированием частоты. В Германии произошла авария с системными последствиями из-за сильного ветра на Северном море и работы ветропарков на полную мощность.

Выработка возобновляемых источников непредсказуема, их диспетчеризация невозможна. Из-за этого страдает экономика: например, немцы вынуждены платить соседям за потребление энергии с немецких ВЭС в случае избыточной выработки. При наличии доплаты энергетики соседних стран запасают ее на собственных ГАЭС. В Великобритании дошло до того, что в некоторых районах владельцам ветряков доплачивают, чтобы их не включали в сеть в отдельные часы.

Второй мощный сигнал для инвесторов — первые крупные заказы на системы централизованного хранения энергии. Так, Калифорния около двух лет назад провела тендер на строительство 1,3 ГВт хранения за счет любых решений. Подобные заказы свидетельствуют, что технологии промышленного хранения будут неизбежно развиваться и пользоваться спросом.

Пока единое решение высокой емкости смог представить только Илон Маск, поставив в Австралию накопитель мощностью 100 МВт. Он эксплуатирует идею удешевления батареек за счет вторичного использования — то есть после использования аккумуляторов в течение двух-трех лет в автомобилях, немного «деградировавшие» батарейки почти бесплатно достанутся энергетикам. Но для масштабного развития таких систем нужен как минимум огромный парк легковых электромобилей, емкость аккумуляторов которого будет сопоставима с потребностями энергосистемы в централизованном хранении.

Технология сплава на границе растворимости

Сплавы на границе растворимости основаны на изменении фазы металла с целью хранения тепловой энергии.

Вместо того, чтобы перекачивать жидкий металл между емкостями, как в системе с расплавом солей, металл заключается в капсулу из другого металла, с которым не может сплавиться (не поддающийся смешению). В зависимости от выбора двух материалов (материал, меняющий фазу и материал капсулы), плотность хранения энергия может оставлять 0,2-2 МДж/л.

Рабочая среда, как правило – вода или пар, используется для передачи тепла к и от сплава на границе растворимости. Теплопроводность таких сплавов зачастую выше (до 400 Вт/м*К), чем у конкурирующих технологий, что означает более быструю возможную «загрузки» и «разгрузки» теплового хранилища. Технология еще не реализована для использования в промышленных масштабах.

Накопление тепла в емкостях и пещерах в скалах

Паровой аккумулятор состоит из изолированного стального резервуара высокого давления, содержащего горячую воду и пар под давлением. В качестве метода для хранения тепла он используется для того, чтобы уравновешивать производства тепла изменчивыми или стабильными источниками при изменяющемся спросе на тепло. Паровые аккумуляторы могут стать действительно необходимыми для накопления энергии в проектах, связанных с тепловой солнечной энергией.

Крупные накопители широко применяются в Скандинавии для хранения тепла в течение нескольких дней, разделения производства тепла и энергия и помощи в удовлетворении пикового спроса. Исследовалось (и оказалось экономически выгодным) межсезонное аккумулирование тепла в пещерах.

Эндотермические и экзотермические химические реакции

Технология на основе гидратов солей

Примером экспериментальной технологии накопления энергии на основе энергии химических реакций является технология на основе гидратов солей. Система использует энергию реакции, создаваемой в случае гидратации или дегидратации солей. Это работает благодаря хранению тепла в резервуаре, содержащем 50 %-ный раствор гидроксида натрия. Тепло (к примеру, получаемое с солнечного коллектора) хранится за счет испарения воды в ходе эндотермической реакции. Когда воду добавляют вновь, в ходе экзотермической реакции при 50C (120F) высвобождается тепло. На данный момент системы работают с КПД в 60 %. Система особенно эффективна для сезонного накопления тепловой энергии, так как высушенная соль может храниться при комнатной температуре длительное время без потерь энергии. Контейнеры с обезвоженной солью даже могут перевозиться в различные места. Система обладает большей плотностью энергии, чем тепло, накопленное в воде, а ее мощность позволяет хранить энергию в течение нескольких месяцев или даже лет.

В 2013 году голландский разработчик технологий «TNO» представил результаты проекта «MERITS» по хранению тепла в контейнере с солью. Тепло, которое может доставляться с солнечного коллектора на плоскую крышу, выпаривает воду, содержащуюся в соли. Когда воду добавляют снова, тепло высвобождается практически без потерь энергии. Контейнер с несколькими кубометрами соли может хранить достаточно термохимической энергии, чтобы обогревать дом всю зиму. При температурном режиме, как в Нидерландах, среднее теплоустойчивое хозяйство потребует за зиму примерно 6,7 ГДж энергии. Чтобы сохранить столько энергии в воде (при разнице температур в 70C), потребовалось бы 23 м3 воды в изолированном резервуаре, что превышает возможности хранения большинства домов. С использованием технологии на основе гидрата солей с плотностью энергии около 1 ГДж/м3, достаточно было бы 4-8 м3.

По состоянию на 2016 год, исследователи из нескольких стран проводят эксперименты по определению наилучшего типа соли или смеси солей. Низкое давление внутри контейнера кажется наилучшим для передачи энергии. Особенно перспективными являются органические соли, так называемые «ионные жидкости». По сравнению с сорбентами на основе галида лития они вызывают гораздо меньше проблем в условиях ограниченных природных ресурсов, а в сравнении с большинством галидов и гидроксидом натрия – менее едки и не дают негативного воздействия через выбросы углекислого газа.

Молекулярные химические связи

На данный момент исследуется возможность хранения энергии в молекулярных химических связях. Уже достигнута плотность энергии, эквивалентная ионно-литиевым батареям.

Бесперебойник на весь дом

Подобный ИБП устанавливается сразу после вводного автомата и обеспечивает гарантированным электропитанием весь дом по трем фазам. В этом случае, для оповещения об отключениях устанавливается GSM модуль или выводится сигнальная лампа на видное место.

При установке ИБП для дома иногда целесообразно в обход источника подключать мощную неприоритетную нагрузку: электропечь сауны, всевозможные электрические подогревы, резервный электрокотел и т.п.

Для бесперебойного питания всего дома с точки зрения оптимального соотношения бюджет/функционал мы рекомендуем одну из трех конфигураций:

Мощный однофазный инвертор и автоматика коммутации фаз. В этом случае одна основная фаза запитывается напрямую через инвертор, две остальных фазы подключаются на инвертор через быстродействующие контакторы. Линия инвертора обеспечивает переключение на резервное электропитание от аккумуляторов за 10мс, а это время не заметно для любого типа оборудования. Остальные две фазы подключаются за 100мс.

ИБП типа он-лайн конфигурации 3в1, что означает трехфазный вход и однофазный выход. Этот источник стабилизирует напряжение, объединяет мощность всех фаз в одну. Таким образом, мы получаем равномерную нагрузку по фазам, идеальное напряжение и, конечно, бесперебойное питание. Это одно из лучших решений при стандартной выделенной мощности в 15кВт.

При большой выделенной мощности оптимально использовать промышленные трехфазные ИБП on-line типа конфигурации 3в3 номиналом от 30-40кВт и выше.


ИБП на 36кВт. Доступный диапазон от 20кВа до 120кВа.

Стоимость среднего ИБП на весь дом с автономной работой на 8-10 часов составит около 250-350т.р.

Какой источник автономного электроснабжения выбрать

Получить электроэнергию можно даже от печки. Однако, если учесть фактор затрат времени и сил, то всерьез можно рассматривать только те источники, которые могут работать сами по себе. По этой причине самыми популярными являются следующие способы обеспечения дома электричеством.

1. Генератор на жидком топливе

Например газовые генераторы доступны в самых разных вариантах, но использовать их в качестве постоянного источника электроэнергии в жилом доме не целесообразно. Причина заключается в:

  1. дороговизне горючего;
  2. шумности работы генератора;
  3. наличие выхлопных газов;
  4. необходимости выделения для генератора отдельного помещения или навеса. 

Цены генераторов на жидком топливе начинаются от 30 тысяч рублей. Однако дешевизна полученной электроэнергии иллюзорная, поскольку должна быть умножена на стоимость топлива.

На фото газовый генератор HONDA HG 5500 (SE) мощностью 4.0кВт, цена 121 тысяч рублей

2. Солнечная электростанция

Солнечная электростанция не требует внимания и топлива. Единственное, что им нужно – это интенсивный свет, а поскольку это топливо природа поставляет не регулярно, то и мощные аккумуляторы. При наличии последних в условиях климата с большим количеством солнечных дней обеспечить дом электричеством вполне возможно. 

Цены на комплект солнечной электростанции начинаются от 130 тысяч рублей. Окупаемость высокая, поскольку некоторые модели могут без проблем работать тридцать лет.

На фото «Солнечная дача» мощностью 1,6 кВт/400Ач/1000 Вт, цена 160 тысяч рублей за комплект

3. Ветрогенератор

Ветрогенераторы не менее популярны, чем солнечные батареи. Однако они еще более зависимы от капризов погоды, поэтому полагаться только на этот источник энергии можно не везде.

Самые простые ветрогенераторы стоят от 30 тысяч рублей. Их можно использовать для локальной выработки электроэнергии, но решить проблему полного энергоснабжения дома они не смогут. Более мощные ветряные генераторы для полноценного обеспечения жилища электричеством (от 3 кВт) обойдутся в 150 тысяч и выше.

Полноценный ветрогенератор мощностью 10 кВт стоит не менее 500 тысяч рублей. При среднем домашнем потреблении 250 кВт в месяц и цене 4 руб/кВт, такой ветряк будет окупаться более 40 лет

4. Мини гидроэлектростанция

Для мини ГЭС необходим водоток с небольшим перепадом высот для обеспечения эффекта падающей воды. В месте такого перепада устанавливается небольшая турбина, и электричество будет поступать в ваш дом постоянно, а главное – бесплатно. Под миниГЭС можно использовать естественный ручей или речку, а можно прорыть небольшой канал, проходящий через ваш участок. Однако такая ГЭС будет работать только в тёплое время года, потом придётся перейти на другие источники.

Если собирать гидроэлектрастанцию на 3-5 кВт из подручных материалов, то стоимость устройства не превысит 20 тысяч рублей

5. Альтернативные источники малой мощности

Сюда можно отнести электричество из земли и атмосферное электричество. Рассчитывать на полноценное элетроснабжение в обоих случаях не приходится, но для «дачных» нужд такие источник вполне пригодны.

Проблема выбора

Казалось бы, выбрать аккумулятор очень просто – бери самый мощный, и все проблемы будут решены. Однако есть вероятность, что даже самый мощный из имеющихся приборов не сможет обеспечить потребности дома в электроэнергии. Кроме того, нужно исходить из цели приобретения. Если вы можете переждать отключение, удовлетворяя лишь самые минимальные потребности, то не стоит сильно тратиться на аккумулятор.

Не вдаваясь в сложные расчёты, можно предложить следующий подход к решению проблемы выбора. Для того, чтобы обеспечить всеми электрическими потребностями средний дом с постоянно проживающими там людьми в течение 24 часов, необходимо иметь батарею весом полтонны и стоимостью в 100-200 тысяч рублей. Целесообразность такой системы сомнительна. Проще создать автономную систему электроснабжения, которая легко запускается вскоре после отключения электроэнергии.

При энергии батареи инвертора в 24 кВт/ч, аккумулятор будет снабжать дом электроэнергией в течение 5 часов. Для обеспечения такой работы вполне можно уложиться в сумму 50 000 – 60 000 рублей. Впрочем, эти суммы ориентировочны и рассчитаны на продукцию отечественного производителя. Аккумуляторы, например, фирмы Panasonic обойдутся дороже, но они отличаются портативностью, надёжностью и долговечностью, а главное – энергии такого аккумулятора хватит на несколько дней работы без подзарядки.

Для жизни при отключении электричества уже создано всё необходимое. Осталось только приобрести и подключить аккумкляторы используя полученные знания. 

Аккумуляторы как спасение от темноты

Аккумуляторы в хозяйстве большого дома нужны всегда. Особенно это актуально для загородного дома при отключении электричества. В сельской местности перебои с электричеством случаются чаще, чем в городах. Объяснений этому феномену много, но для жителей частных домов лучше не вникать в причинно-следственные связи, а запастись готовым решением — аккумуляторами.

Однако их нужно много, поэтому лучше использовать специальные аккумуляторы большой мощности, рассчитанные на работу при глубокой разрядке. Наиболее приемлемыми для таких целей считаются свинцово-кислотные аккумуляторы, которые выпускаются как в герметично закрытом варианте, так и с жидким электролитом. Они отличаются простотой и небольшой ценой. Промышленность выпускает так же и никель-кадмиевые аккумуляторы. Они дороже, но служат дольше.

Ещё дороже гелевые аккумуляторы, что не мешает им быть популярными у владельцев загородной недвижимости. Название происходит от электролита, находящегося в состоянии геля. Желеобразность электролита происходит от присадки из двуокиси кремния. Это делает аккумуляторы более жизнеспособными и долгоживущими.

Аккумуляторы, предназначенные для энергетических нужд загородного дома, должны обладать следующими свойствами.

  • Иметь небольшие вес и габариты. Обычно это достигается разделением устройства на несколько легко переносимых секций.
  • Быстро заряжаться от сети в 220 в.
  • Иметь возможность подключения к автономным генераторам (солнечным, ветряным, гидро и т.п.)
  • Обладать ёмкостью, позволяющей подключаться отдельно к бытовым приборам или системе освещения.
  • Возможностью формирования батареи из нескольких аккумуляторов.

Характеристики:

Выберите тип

Параметр

Значение

МБ-160-51,2

МБ-160-25,6

МБ-160-12,8

Номинальное выходное напряжение, В постоянного тока

51,2

25,6

12,8

Максимальное выходное напряжение, В постоянного тока

58,4

29,2

14,6

Энергоемкость, кВт·ч

8

Емкость, А·ч

160

320

640

Удельная энергоемкость, Вт·ч/кг

122

Минимальный уровень заряда, В

46,4

23,2

11,6

Номинальный режим

Заряд

0,5С (80 А)

0,5С (80 А)

0,5С (80 А)

Разряд

1С (160 А)

1С (160 А)

1С (160 А)

Максимальный продолжительный

Заряд

2С (320 А)

2С (320 А)

2С (320 А)

Разряд

2С (320 А)

2С (320 А)

2С (320 А)

Количество циклов разряда – заряда током 1С, при Т плюс 22 °С и глубине разряда не более 80 % 

5000

Время заряда одного модуля током 1С до уровня 95 % состояния заряда модуля, час

не более 1

Кол-во разъёмов для подключения нагрузки или соединения батарейных модулей, шт.

1

Масса, кг

72,4

Габаритные размеры, мм

417 х 208 х 652,5

Оптимальный температурный диапазон, °С

+19…+22

Температура заряда, °С

0…+45

Температура разряда, °С

–15…+55

Предельная температура, °С

–25…+55

Монтаж

в шкаф

Тревоги (световые)

– превышение заданных пределов зарядного тока или напряжения в цепи МБ

– отсутствие подключения МБ

– разряд батареи МБ

Срок службы (при эксплуатации в условиях заданных техническими условиями), не менее

7 лет

Тип накопительных элементов

литий-ионный

Параметр

Значение

МБ-125-51,2

МБ-125-25,6

МБ-125-12,8

Номинальное выходное напряжение, В постоянного тока

51,2

25,6

12,8

Максимальное выходное напряжение, В постоянного тока

58,4

29,2

14,6

Энергоемкость, кВт·ч

6,2

Емкость, А·ч

125

250

500

Удельная энергоемкость, Вт·ч/кг

94

Минимальный уровень заряда, В

46,4

23,2

11,6

Номинальный режим

Заряд

0,5С (80 А)

0,5С (80 А)

0,5С (80 А)

Разряд

1С (160 А)

1С (160 А)

1С (160 А)

Максимальный продолжительный

Заряд

2С (320 А)

2С (320 А)

2С (320 А)

Разряд

2С (320 А)

2С (320 А)

2С (320 А)

Количество циклов разряда – заряда током 1С, при Т плюс 22 °С и глубине разряда не более 80 % 

5000

Время заряда одного модуля током 1С до уровня 95 % состояния заряда модуля, час

не более 1

Кол-во разъёмов для подключения нагрузки или соединения батарейных модулей, шт.

1

Масса, кг

69,8

Габаритные размеры, мм

417 х 208 х 652,5

Оптимальный температурный диапазон, °С

+19…+22

Температура заряда, °С

0…+45

Температура разряда, °С

–15…+55

Предельная температура, °С

–25…+55

Монтаж

в шкаф

Тревоги (световые)

– превышение заданных пределов зарядного тока или напряжения в цепи МБ

– отсутствие подключения МБ

– разряд батареи МБ

Срок службы (при эксплуатации в условиях заданных техническими условиями), не менее

7 лет

Тип накопительных элементов

литий-ионный

Пневматические системы

Принцип их работы достаточно прост. С помощью насоса сжимается воздух и закачивается в резервуар. При необходимости расходования электроэнергии воздух выпускается из резервуара, проходя через турбину, вырабатывающую электроэнергию. Идея тоже древняя, относится к XIX веку. Главный недостаток — КПД не превышает 55%. Тем не менее в XX веке аккумулирующие электростанции на основе сжатого воздуха широко использовались в США и Германии. Кстати, в Германии для закачки воздуха использовались заброшенные соляные шахты. Но потом все сошло на нет — последняя электростанция на сжатом воздухе была запущена в США в 1991 году.

В 2010-х годах идею возродили, и на деньги Европейского союза запущен исследовательский проект Ricas 2020, направленный на поиск новых способов использования сжатого воздуха для накопления энергии с более высоким КПД. Но пока ни о каких реальных результатах не известно.

Аккумуляторы

Для накопителей, выравнивающих энергопотребление, обычные свинцово-кислотные аккумуляторы не подходят. Это связано с малым количеством циклов заряда-разряда, а также необходимостью обслуживания аккумуляторов (при-ходится регулярно доливать дистиллированную воду из-за испарения электролита). В солнечных электростанциях небольшой мощности применяются так называемые гелевые аккумуляторы. В них электролит находится не в форме жидкости, а в форме геля. Такие аккумуляторы не требуют обслуживания. Их недостатком является то, что при зарядке свыше номинального уровня они быстро выходят из строя, но эта проблема решается при помощи современных микропроцессорных контроллеров. Уникальным преимуществом гелевых аккумуляторов является их возможность работы при низких (до —15°С) температурах. Благодаря этому нет необходимости специально отапливать накопитель, размещенный на улице, достаточно тепла, отводимого от контроллера.

Более совершенными являются никель-кадмиевые (NiCd) аккумуляторы. Они надежны и обеспечивают сохранение большего количества энергии в меньшем объеме. Тем не менее для накопителей энергии, сглаживающих пики потребления в сети, данные аккумуляторы непригодны из-за ярко выраженного «эффекта памяти». При неполном разряде и последующем заряде емкость аккумулятора снижается. Требуется полностью разряжать аккумулятор и потом заряжать его до 100%. Для рассматриваемого применения такие аккумуляторы непригодны. Более продвинутые никель-металлогидридные (NiMH) аккумуляторы обладают большей емкостью, «эффект памяти» в них менее выражен, но все-таки присутствует.

Аккумуляторы типоразмера 18650 используются в электромобилях, и они же являются основой накопителей энергии

Наиболее популярным сейчас являются литий-ионные (Li-Ion) аккумуляторы. Именно их сейчас используют в накопителях, устанавливаемых непосредственно у потребителей, а также в ключевых местах электросети. Кстати, идея создания накопителя, стоящего у потребителя дома, возникла из необходимости использования аккумуляторов типоразмера 18650, применяемых в электромобилях. По мере износа аккумуляторной батареи в электромобиле производитель забирает ее себе обратно (почему — будет сказано далее). Аккумуляторы, которые уже не могут обеспечить нужную тягу электромобилю, тем не менее подходят для использования в бытовом накопителе энергии. После всестороннего тестирования их туда и ставят. Что же касается накопителей, устанавливаемых на узлах электросети, то в них используют новые аккумуляторные батареи, но есть проекты построения таких накопителей и на основе аккумуляторов, ранее стоявших в электромобилях.

Накопитель Tesla Powerwall 2

Преимуществами Li-Ion аккумуляторов являются: высокая плотность накапливаемой энергии, пренебрежительно малый уровень «эффекта памяти», низкое выходное сопротивление, что позволяет на пиках нагрузки отдавать потребителю большую мощность. Но есть и недостатки. При неправильных зарядке и эксплуатации аккумуляторы не просто выходят из строя, они могут воспламеняться и даже взрываться. Проблема решается с помощью микропроцессорных контроллеров в зарядных устройствах, тем не менее, иногда такие устройства могут давать сбои. Литий — чрезвычайно токсичный химический элемент, вот почему производители электромобилей в обязательном порядке забирают себе обратно отработавшие свое аккумуляторы. Наконец, запасы лития в мире ограничены, уже в ближайшее время прогнозируется нехватка этого металла.

Накопление тепла в горячей породе, бетоне, гальке и т.д.

Вода обладает одной из самых высоких теплоемкостей – 4,2 Дж/см3*К, тогда как бетон обладает лишь одной третью от этого значения. С другой стороны, бетон может нагреваться до гораздо более высоких температур – 1200C за счет, например, электронагрева и, таким образом, обладает гораздо большей общей емкостью. Следуя из примера далее, изолированный куб примерно 2,8 м в поперечнике может оказаться способным обеспечивать достаточный объем хранимого тепла для одного дома, чтобы удовлетворить 50 % потребности в отоплении. В принципе, это может быть использовано для хранения избыточной ветряной или фотоэлектрической тепловой энергии благодаря способности электронагрева к достижению высоких температур

На уровне округов международное внимание привлек проект «Виггенхаузен-Зюд» в немецком городе Фридрисхафене. Это – железобетонный теплоаккумулятор объемом в 12 000 м3 (420 000 куб.фт.), соединенный с комплексом солнечных коллекторов площадью 4 300 м2 (46 000 квадр

фт), наполовину обеспечивающих потребность в горячей воде и отоплении у 570 домов. Компания «Siemens» строит под Гамбургом хранилище тепла емкостью 36 МВТ*ч, состоящее из базальта, разогретого до 600C, и выработкой энергии в 1,5 МВт. Схожая система планируется для постройки в датском городе Сорё, где 41-58 % накопленного тепла емкостью в 18 МВт*ч будет передаваться для центрального теплоснабжения города, а 30-41 % — как электричество.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector