Верхняя мантия земли: состав, температура, интересные факты

Слои мантии и внутренние границы

Столетие исследований позволило заполнить некоторые пробелы в знаниях о мантии. Она имеет три основных слоя. Верхняя мантия простирается от основания коры (Мохоровичича) до глубины 660 километров. Переходная зона расположена между 410 и 660 километрами, где происходят значительные физические изменения минералов.

Нижняя мантия простирается от 660 до примерно 2700 километров. Здесь сейсмические волны сильно приглушены, и большинство исследователей считают, что породы под ними различны по химическому составу, а не только по кристаллографии. И последний спорный слой на дне мантии имеет толщину около 200 километров и является границей между ядром и мантией.

Процессы мантии

Процессы, происходящие на такой глубине, изучены довольно плохо. Например, существует теория, что земное ядро оказывает серьёзное влияние на мантию и процессы, происходящие в ней, но пока что серьёзных подтверждений этому не найдено. Ну а сама мантия оказывает существенное влияние на земную кору. Выражено это различными природными явлениями: вулканизмом, землетрясениями, движением тектонических плит, что является причиной образования гор и впадин.Также в мантии образуются различные минералы и формируются месторождения полезных ископаемых.

Процессы, происходящие в глубинах планеты, оказывают огромное влияние на жизнь людей. Приносят они как пользу, так и вред. Но эти процессы изучены весьма плохо, потому сложно предположить, что же ожидает нас в дальнейшем. Никто не знает, как деятельность людей повлияет на планету.Когда учащаются землетрясения, учёные не могут внятно объяснить, что послужило тому причиной, и строят десятки теорий по этому поводу. Но в этом нет их вины, поскольку никто не сможет дать нормальных объяснений, не имея данных необходимых исследований. В таком случае, не совсем понятно, почему тратятся колоссальные средства на изучение космоса, когда от участившихся землетрясений погибают сотни тысяч людей.

Список литературы

  • Верхняя мантия. Пер. с англ. — М.: «Мир». 1964.
  • Деменицкая Р. М. Кора и мантия Земли. — М.: «Недра». 1967.
  • Шейнман Ю. М. Очерки глубинной геологии. — М.: «Недра». 1968.
  • Петрология верхней мантии. — М.: «Мир». 1968.
  • Земная кора и Мантия Земли. Пер. с англ. Серия «Науки о Земле. Фундаментальные труды зарубежных ученых по геологии, геофизике и геохимии». — М.: «Мир». 1972.
  • Ботт М. Внутреннее строение Земли. — М.: «Мир». 1974.
  • Верхняя мантия. Пер. с англ. Серия «Науки о Земле. Фундаментальные труды зарубежных ученых по геологии, геофизике и геохимии». — М.: «Мир». 1975.
  • Милютина Е. Н. Сейсмические исследования верхней мантии. — М.: «Наука». 1976.
  • Тектоносфера Земли. Под ред. В. В. Белоусова. — М.: «Наука». 1979.
  • Моисеенко Ф. С. Основы глубинной геологии. — М.: «Недра». 1981.
  • Пущаровский Д. Ю., Пущаровский Ю. М.

Королевская мантия

Королевская мантия — торжественное облачение монарха. Как правило, шилась из бархата и подбивалась горностаевым мехом. Цвет бархата зависел от основного геральдического цвета государственного герба, но в большинстве случаев был пурпурного (тёмно-красного) цвета. Бархатная поверхность мантии расшивалась золотом. Узор был наполнен глубоким символическим смыслом. Также использовались геральдические фигуры государственного герба. По своей форме мантия представляет полукруг, без рукавов, с длинным шлейфом.

Российская императорская мантия

Мантия золотого бархата, подбитая горностаевым мехом с длинным шлейфом. Расшита геральдическими орлами государственного герба Российской империи.

Австрийская императорская мантия

Мантия пурпурного бархата, подбитая горностаевым мехом, по подолу расшитая золотыми лавровыми и дубовыми ветвями, а по поверхности небольшими изображениями золотых двуглавых коронованных орлов. Украшена золотыми шнурами с золотыми же кистями.

Источники информации о мантии

Мантия Земли недоступна непосредственному исследованию: она не выходит на земную поверхность и не достигнута глубинным бурением. Поэтому большая часть информации о мантии получена геохимическими и геофизическими методами. Данные же о её геологическом строении очень ограничены.

Мантию изучают по следующим данным:

  • Геофизические данные. В первую очередь данные о скоростях сейсмических волн, электропроводности и силе тяжести.
  • Мантийные расплавы — перидотиты, базальты, коматииты, кимберлиты, лампроиты, карбонатиты и некоторые другие магматические горные породы образуются в результате частичного плавления мантии. Состав расплава является следствием состава плавившихся пород, механизма плавления и физико-химических параметров процесса плавления. В целом, реконструкция источника по расплаву — сложная задача.
  • Фрагменты мантийных пород, выносимые на поверхность мантийными же расплавами — кимберлитами, щелочными базальтами и др. Это ксенолиты, ксенокристы и алмазы. Алмазы занимают среди источников информации о мантии особое место. Именно в алмазах установлены самые глубинные минералы, которые, возможно, происходят даже из нижней мантии. В таком случае эти алмазы представляют собой самые глубокие фрагменты земли, доступные непосредственному изучению.
  • Мантийные породы в составе земной коры. Такие комплексы в наибольшей степени соответствуют мантии, но и отличаются от неё. Самое главное различие — в самом факте их нахождения в составе земной коры, из чего следует, что они образовались в результате не совсем обычных процессов и, возможно, не отражают типичную мантию. Они встречаются в следующих геодинамических обстановках:
  1. Альпинотипные гипербазиты — части мантии, внедрённые в земную кору в результате горообразования. Наиболее распространены в Альпах, от которых и произошло название.
  2. Офиолитовые гипербазиты — перидотиты в составе офиолитовых комплексов — частей древней океанической коры.
  3. Абиссальные перидотиты — выступы мантийных пород на дне океанов или рифтов.

Эти комплексы имеют то преимущество, что в них можно наблюдать геологические соотношения между различными породами.

Было объявлено, что японские исследователи планируют предпринять попытку пробурить океаническую кору до мантии. Начало бурения планировалось на 2007 год. Обсуждалась также возможность проникновения к границе Мохоровичича и в верхнюю мантию с помощью самопогружающихся вольфрамовых капсул, обогреваемых теплом распадающихся радионуклидов ().

Основной недостаток полученной из этих фрагментов информации — невозможность установления геологических соотношений между различными типами пород. Это кусочки мозаики. Как сказал классик[кто?], «определение состава мантии по ксенолитам напоминает попытки определения геологического строения гор по галькам, которые из них вынесла речка».

Давление и температура

Распределение давления в пределах мантии неоднозначно, собственно как и температурного режима, но обо всем по порядку. На долю мантии приходится больше половины веса планеты, а если сказать точнее, то 67%. В участках под земной корой давление составляет около 1,3-1,4 млн.атм., при этом, следует отметить, что в местах, где расположены океаны, уровень давления существенно спадает.

Что же касается температурного режима, то здесь данные вовсе неоднозначны и базируются только на теоретических предположениях. Так, у подошвы мантии предполагается температура в 1500-10 000 градусов по Цельсию. В целом, ученые предположили, что температурный уровень на данном участке планеты более близок к температуре плавления.

Исследования мантии и границы Мохоровичича

Мантия Земли не дает покоя ученым уже достаточно длительное время. В лабораториях над породами, предположительно входящими в состав верхнего и нижнего слоя проводятся эксперименты, позволяющие понять состав и особенности мантии. Так, японскими учеными было установлено, что нижний слой содержит большое количество кремния. В верхней мантии располагаются запасы воды. Она поступает из земной коры, а также проникает отсюда на поверхность.

Особый интерес представляет поверхность Мохоровичича, природа которой до конца непонятна. Сейсмологические исследования предполагают, что на уровне 410 км под поверхностью происходит метаморфическое изменение пород (они становятся более плотными), что проявляется в резком увеличении скорости проведения волн. Предполагается, что базальтовые породы в районе границы Мохоровичича превращаются в эклогит. При этом происходит увеличение плотности мантии примерно на 30 %. Есть и другая версия, согласно которой, причина изменения скорости проведения сейсмических волн кроется в изменении состава пород.

Способы изучения

Само собой разумеется, что слои, которые находятся на большой глубине достаточно сложно изучать и не только потому, что не такой техники. Усложняется процесс еще и тем, что температура практически постоянно повышается, а вместе с тем возрастает и плотность. Поэтому, можно сказать, что глубина нахождения слоя, является наименьшей проблемой, в этом случае.

Вместе с тем, ученым все же удалось продвинуться в изучении данного вопроса. Для исследования этого участка нашей планеты, главным источником информации были выбраны как раз геофизические показатели. Кроме этого, в ходе исследования, ученые используют и такие данные:

  • скорость сейсмических волн;
  • сила тяжести;
  • характеристики и показатели электропроводности;
  • изучение магматических пород и обломков мантии, которые редко, но все же удается найти на поверхности Земли.

Что касается последнего, то здесь особенного внимания ученых заслуживают именно алмазы – по их мнению, изучая состав и строение этого камня, можно выяснить много интересного даже о нижних слоях мантии.

Изредка, но встречаются мантийные породы. Их изучение также позволяет добыть ценную информацию, но в той или иной степени все же будут присутствовать искажения. Обусловлено это тем, что в коре происходят различные процессы, которые несколько отличаются от тех, которые происходят в глубинах нашей планеты.

Отдельно следует рассказать о технике, при помощи которой ученые пытаются достать оригинальные породы мантии. Так, в 2005 году в Японии было возведено специальное судно, которое, по мнению самих разработчиков проекта, сможет сделать рекордно глубокую скважину. На данный момент работы еще идут, а старт проекта намечен уже на 2020 год – ждать осталось не так уж и много.

Сейчас же все изучения строения мантии происходят в рамках лаборатории. Ученые уже точно установили, что нижний слой этого участка планеты, практически весь состоит из кремния.

Следующий пласт – мантия Земли

Давайте с ним познакомимся. Мантия Земли – это фрагмент, который располагается под корой и почти доходит до сердцевины. Иными словами, это пелена, которая укрывает «сердце» Земли. Это основная составляющая земного шара.

Она состоит из пород, в структуру которых входят силикаты железа, кальция, магния и др. Вообще, ученые полагают, что ее внутреннее содержание схоже по составу с каменными метеоритами (хондритами). В большей степени в мантию земли входят химические элементы, которые пребывают в твердом виде или в твердых химических соединениях: железо, кислород, магний, кремний, кальций, оксиды, калий, натрий и др.

Ее никогда не видел глаз человеческий, но, по мнению ученых, она занимает большую часть объема Земли, порядка 83%, масса ее — почти 70% земного шара.

А также есть предположение, что по направлению к земной сердцевине давление увеличивается, а температура доходит до своего максимума.

Вследствие этого температура мантии Земли измеряется не одной тысячей градусов. При таких обстоятельствах, казалось бы, субстанция мантии должна расплавиться или преобразоваться в газообразное состояние, но этот процесс останавливает сильнейшее давление.

Следовательно, мантия Земли находится в кристаллически-твердом состоянии. Хотя при этом накалена.

Строение мантии Земли

Существует граница, отделяющая земную поверхностную кору от мантии. Называют её границей Мохоровичича, хотя иногда сокращают до простого Мохо. Располагается она на различных глубинах, зависящих от участка земной поверхности. Так, под океанами граница Мохо находится выше всего (7-10 км), а под складчатыми поясами залегает гораздо глубже (до 70 км). Характерной особенностью границы Мохоровичича является то, что на ней наблюдается резкое увеличение сейсмических скоростей (от 7 до 8 км/с). Принято считать, что происходит это из-за изменения состава пород.

Мантия нашей планеты разделена на 2 части: верхнюю мантию и нижнюю. Друг от друга они также отделены границей, так называемым слоем Голицына. Располагает он примерно на глубине 670 км. Таким образом, становится понятно, что верхняя мантия значительно тоньше нижней.

Моделирование мантии в лаборатории

Минералы и породы меняются под высоким давлением. Например, общий мантийный минерал — оливин преобразовывается в различные кристаллические формы на глубинах около 410 километров и снова на 660 километрах.

Изучение поведения минералов в условиях мантии происходит двумя способами: компьютерное моделирование, основанное на уравнениях физики минералов и лабораторных экспериментах. Таким образом, современные исследования мантии проводятся сейсмологами, программистами и лабораторными исследователями, которые теперь могут воспроизводить условия в любом месте мантии с помощью лабораторного оборудования под высоким давлением, такого как ячейка с алмазной наковальней.

Почему важно исследовать мантию Земли?

Мантия находится от нас далеко (точнее, глубоко), но, безусловно, влияет на жизнь людей и всей окружающей нас природы. Движения в мантии заставляют перемещаться стоящие на ней огромные плиты коры, которые несут континенты. Результат известен – землетрясения, извержения вулканов и массовые вымирания организмов, рождение и гибель островов, движение материков. Поняв процессы в мантии, мы получим шанс предвидеть глобальные катастрофы.

Тепловые перемещения в мантии влияют на появление зон подземного тепла. Представляя себе её «поведение», будет легче находить такие зоны для постройки геотермальных электростанций, горячие подземные воды, металлические руды. Да и другие полезные ископаемые тоже. Скажем, считалось, что горючий газ метан образуется из гниющей органики благодаря бактериям. Но не так давно группа физиков доказала, что бывает иначе. Учёные смешали воду, оксид железа и минерал кальцит. Смесь разогрели до 1000°С под давлением 110 тысяч атмосфер и получили метан! Эти означало, что он может появляться и в глубинах мантии. Не исключено, что оттуда он поднимается в толщу коры. Так что тут нужно искать его скопления и добывать.

Как изучают строение Земли на таких огромных глубинах?

Конечно, недра – это не бездны океана или космоса. Внутрь планеты не послать ни экспедиции, ни роботов. Однако разработаны методы, которые позволяют туда «заглянуть». Для этого есть несколько путей.

1. Геофизические исследования. Например, регистрировать распространение волн от землетрясений. Пока эти волны доберутся, например, от Японии до Германии, они не раз изменят своё направление и скорость. По тому, в каких слоях они идут медленней, в каких – быстрее, можно судить о строении этих слоёв, их составе.

2. Геологические коллекции. Специалисты часто умеют различать «камешки» по месту их рождения. Так, недавно удалось по примесям расшифровать биографию шести алмазов. Когда-то крошечные кусочки углерода опустились из коры в мантию и «утонули» в ней. Чудовищное давление превратило их в кристаллы алмаза, а восходящий поток понёс их в кору. Они оказались в вулканической породе, которую через 200 млн. лет люди подняли из бразильской шахты.

3. Эксперименты. Примерно представляя себе условия в недрах Земли, можно воспроизвести их в лабораториях и посмотреть на результаты.

4. Бурение сверхглубоких скважин. Правда, пока что самая глубокая из них, на Кольском полуострове достигла лишь отметки 12 262 метра. Возможно, добраться до мантии получится бурением океанского дна – здесь-то кора намного тоньше. Такое может оказаться под силу буровым суднам, уже созданным специально для подобных работ.

Деятельность в мантии

Верхнюю часть мантии медленно перемешивают движения плит, проходящих над ней. Это вызвано двумя видами деятельности. Во-первых, происходит движение подвижных плит вниз, которые скользят друг под другом. Во-вторых, происходит восходящее движение мантийной породы, когда две тектонические плиты расходятся и раздвигаются. Тем не менее, все эти действие не полностью смешивает верхний слой мантии, и геохимики считают верхнюю мантию каменной версией мраморного пирога.

Мировые модели вулканизма отражают действие тектоники плит, за исключением нескольких областей планеты, называемых горячими точками. Горячие точки могут служить ключом к подъему и опусканию материалов гораздо глубже в мантии, возможно, с самого ее основания. В наши дни идет энергичная научная дискуссия о горячих точках планеты.

Состав мантии

Мантия сложена главным образом ультраосновными породами: перовскитами, перидотитами (лерцолитами, гарцбургитами, верлитами, пироксенитами, дунитами) и в меньшей степени основными породами — эклогитами.

Также среди мантийных пород установлены редкие разновидности пород, не встречающиеся в земной коре. Это различные флогопитовые перидотиты, гроспидиты, карбонатиты.

Содержание основных элементов в мантии Земли в массовых процентах
Элемент Концентрация Оксид Концентрация
O 44,8
Si 21,5 SiO2 46
Mg 22,8 MgO 37,8
Fe 5,8 FeO 7,5
Al 2,2 Al2O3 4,2
Ca 2,3 CaO 3,2
Na 0,3 Na2O 0,4
K 0,03 K2O 0,04
Сумма 99,7 Сумма 99,1

Литосфера

Верхушка мантии, располагающаяся на жаркой астеносфере, в тандеме с земной корой нашей планеты образует прочный корпус — литосферу. В переводе с греческого языка – камень. Она не является цельной, а состоит из литосферных плит.

Их количество – тринадцать, хотя оно не остается постоянным. Движутся они очень медленно, до шести сантиметров в год.

Их совокупные разнонаправленные движения, которые сопровождаются разломами с образованием бороздок земной коры, носят название тектонические.

Этот процесс активируется за счет постоянной миграции составляющих мантии.

Поэтому происходят вышеупомянутые подземные толчки, существуют вулканы, глубоководные впадины, хребты.

Состав

Само собой, что точно установить из чего состоит мантия нашей планеты, нельзя, так как добраться туда невозможно. Поэтому, все, что удается изучить ученым, происходит при помощи обломков этого участки, которые периодически появляются на поверхности.

Так, после ряда исследований удалось выяснить, что этот участок Земли черно-зеленого цвета. Основной состав — это горные породы, которые состоят из таких химических элементов:

  • кремний;
  • кальций;
  • магний;
  • железо;
  • кислород.

По внешнему виду, а в чем-то даже и по составу, она очень похожа на каменные метеориты, которые также периодически попадают на нашу планету.

Вещества, которые находятся в самой мантии, жидкие, вязкообразные, так как температура на данном участке превышает тысячи градусов. Ближе к коре Земли температура снижается. Таким образом, происходит некоторый круговорот – те массы, которые уже охладились, спускаются вниз, а разогретые до предела попадают наверх, поэтому процесс «смешивания» никогда не прекращается.

Периодически, такие разогретые потоки попадают в самую кору планеты, в чем им оказывают содействие действующие вулканы.

Облачение монашествующих

В православии мантия является верхним одеянием для всех монашествующих как имеющих церковный сан (архиереев, архимандритов, иеромонахов и др.), так и простых монахов (не ниже малосхимников); а также архиереев, которые не являются монахами (греческая традиция).

Представляет собой длинную, до земли накидку без рукавов с застёжкой на вороте, покрывающую подрясник и рясу. Во время богослужений монахи могут использовать мантию со шлейфом — служебную мантию. Мантии архимандритов и архиереев стандартно со шлейфом (у архиереев шлейф длиннее) и скрижалями. Возникла как монашеское облачение в IV—V веках. Впоследствии, когда установилась практика избирать архиереев из монашествующего духовенства, мантия стала также архиерейским облачением.

Мантия символизирует отрешённость монахов от мира, а также всепокрывающую силу Божию.

Патриарх Кирилл в зелёной мантии

Патриарх Феофил в красной мантии

Мантия у архимандритов чёрная, как у всех остальных монашествующих. В Русской Православной Церкви у Московского Патриарха — зелёная, у митрополита — голубая, или синяя, у архиепископа и епископа — фиолетовая. Во время Великого поста надевается такая же мантия, только чёрная (независимо от архиерейского сана). В Константинопольской, Александрийской, Антиохийской, Иерусалимской, Грузинской, Румынской, Кипрской, Элладской и Албанской Православных Церквях все архиерейские мантии — алого, голубого или пурпурного цвета, независимо от титула архиерея (будь он патриархом, архиепископом, митрополитом или епископом). То же относится и к Мелькитской Католической Церкви. В Сербской, Болгарской и Польской Православных Церквях, а также в Православных Церквях Америки и Чешских земель и Словакии «цветовая гамма» мантий в целом соответствует системе, принятой в Русской Православной Церкви. Кроме того, во всех Православных Церквях, мантия епископа, как и мантия архимандрита, имеет так называемые скрижали. Скрижали — это четырёхугольные платы, размещаемые на верхней части мантии, с изображением крестов или серафимов и с инициалами архиерея или архимандрита — на нижней. Скрижали на мантии означают, что епископ, управляя церковью, должен руководствоваться заповедями Божиими. На мантию архиерея нашиваются сверху в три ряда белые и красные ленты из другой ткани — так называемые «источники» или «струи». Они символически изображают учение, истекающее из Ветхого и Нового Заветов, проповедовать которое — обязанность епископа. Мантия надевается архиереем при входе в храм, на литию, молебны, а также во время торжественных процессий и церемоний.

Монашеская мантия (игуменская, а также иеромонаха, иеродиакона), называемая «палием», в основном чёрная, из шелковых тканей (в РПЦ обычно из крепдешина). Имеет сорок складок, по числу дней поста Господня, символизируя постническую жизнь монаха. В чинопоследовании пострига мантия называется одеждой нетления и чистоты.
Разновидностью мантии является укороченный вариант — полумантия. Полумантия бывает разной длины (по локоть, по пояс, выше колен и т. д.), обычно из более плотной, чем у мантии ткани. Нижние либо все края мантии (воскрилия) часто бывают красного цвета, что символизирует пролитую кровь Спасителя. В древности полумантию применяли для келейного пользования, сейчас все чаще в повседневном (небогослужебном) использовании, что связано прежде всего с большей практичностью в использовании.

Каково же строение мантии Земли?

Геосферу можно охарактеризовать наличием трех слоев. Это верхняя мантия Земли, за ней идет астеносфера, и замыкается ряд нижней мантией.

Мантия состоит из верхней и нижней, первая простирается вширь от 800 до 900 км, вторая имеет ширину 2 тысячи километров. Общая толщина мантии Земли (обоих слоев) равняется приблизительно трем тысячам километров.

Наружный фрагмент расположен под земной корой и входит в литосферу, нижний составляют астеносфера и слой Голицина, для которого характерно увеличение скоростей сейсмических волн.

Согласно гипотезе ученых, верхняя мантия образована прочными породами, поэтому твердая. Но на отрезке от 50 до 250 километров от поверхности земной коры есть не в полной мере расплавленная прослойка – астеносфера. Вещество в этой части мантии напоминает аморфное или полурасплавленное состояние.

Этот слой имеет мягкую пластилиновую структуру, по которому перемещаются твердые слои, находящиеся выше. В связи с этой особенностью эта часть мантии имеет способность течь очень медленно, на несколько десятков миллиметров в год. Но тем не менее это весьма ощутимый процесс на фоне движения земной коры.

Процессы, протекающие внутри мантии, оказывают влияние и прямое воздействие на кору земного шара, вследствие чего происходит движение континентов, горообразование, а человечество сталкивается с такими природными явлениями, как вулканизм, землетрясения.

Структура оболочки

Теперь рассмотрим строение мантии земли. Геосфера состоит из следующих частей:

  • верхняя мантия, толщиной 800-900 км;
  • астеносфера;
  • нижняя мантия, толщиной около 2000 км.

Верхняя мантия – это часть оболочки, которая расположена ниже земной коры и входит в литосферу. В свою очередь она делится на астеносферу и слой Голицина, который характеризуется интенсивным увеличением скоростей сейсмических волн. Эта часть мантии Земли влияет на такие процессы, как тектонические движения плит, метаморфизм и магматизм. Стоит отметить, что строение ее отличается в зависимости от того, под каким тектоническим объектом она располагается.

Астеносфера. Само название серединного слоя оболочки с греческого языка переводится, как «слабый шар». Геосфера, которую относят к верхней части мантии, а иногда выделяют в отдельный слой, характеризируется пониженной твердостью, прочностью и вязкостью. Верхняя граница астеносферы всегда находится ниже крайней линии земной коры: под континентами – на глубине 100 км, под морским дном – 50 км. Нижняя черта ее расположена на глубине 250-300 км. Астеносфера является главным источником магмы на планете, а движение аморфного и пластичного вещества считается причиной тектонических движений в горизонтальной и вертикальной плоскостях, магматизма и метаморфизма земной коры.

О нижней части мантии ученые знают немного. Считается, что на границе с ядром расположен особенный слой Д, напоминающий астеносферу. Он отличается высокой температурой (из-за близости раскаленного ядра) и неоднородностью вещества. В состав же массы входит железо и никель.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector