15 парадоксов, которые взорвут ваш мозг

Введение

Парадокс в широком смысле — это утверждение, резко расходящееся с общепринятыми, устоявшимися мнениями, отрицание того, что представляется «безусловно правильным». Само греческое слово, от которого произведено слово «парадокс», буквально означало «необычное, странное, невероятное, замечательное».

Парадокс в более узком и более современном значении — это два противоположных утверждения, для каждого из которых имеются представляющиеся убедительными аргументы.

Особое место занимают парадоксы в математике и логике, так как «чистая математика» — абстрактная наука, построенная на теориях, которые не кажутся очевидными с первого взгляда. Здесь их статус глубоких и кардинальных проблем не подвергается сомнению

Тем более, что в математике, как ни в одной другой науке, особое внимание обращается на строгость и логическую последовательность доказательств. При этом часто возникают ситуации, в которых рассуждения, применяющиеся совсем недавно и считающиеся строгими, будут требовать дополнительного обоснования

Тогда математик просто излагает свои идеи в том виде, как они у него возникают. Однако часто возникает необходимость сделать выбор между методами изложения некорректными, но, быть может, плодотворными, и корректными, но позволяющими выразить мысль лишь в измененном виде и притом ценой значительных усилий. Ни тот, ни другой путь не свободен от опасностей. Первый путь ведет к возникновению и развитию новых теории и нового уровня абстракции, а, следовательно, и парадоксов, второй к «затуханию науки». Поэтому данная курсовая работа ставит перед собой цель рассмотреть понятие «парадоксов», их виды, а также проблемы парадоксов в математике и их значение для развития математической науки.

1.1 Свойство парадоксов

Все парадоксы имеют одно общее свойство — самоприменимость (циркулярность). В каждом из них объект, о котором идет речь, характеризуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, самого хитрого человека, мы делаем это при помощи совокупности людей, к которой относится и данный человек. И если говорим: «Это высказывание ложно», мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний.

Во всех парадоксах имеет место самоприменимость понятий, а значит, есть как бы движение по кругу, приводящее, в конце концов, к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывается, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов.

Описание

Предсказатель ставит перед игроком две коробки — открытую и закрытую. В открытой коробке находится тысяча долларов, в закрытой — либо миллион долларов, либо ничего. Игрок может взять себе или только закрытую коробку, или обе коробки вместе. Содержимое коробки зависит от предсказателя:

  • Если он предскажет, что игрок выберет обе коробки, то закрытая коробка будет пустой
  • Если предсказывается, что игрок выберет закрытую коробку, то коробка будет содержать миллион долларов.

Какую коробку следует выбрать игроку, чтобы получить наибольшую сумму? Ему известны все условия игры, известно, что содержимое коробки зависит от предсказаний; единственное, что ему неизвестно, — это какое именно из двух предсказаний сделано.

2.1 Парадокс «Лжец»

Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс «Лжец», сформулированный греческим философом Эвбулидом из Милета в IV веке до н.э.

Имеются различные варианты этого парадокса. В простейшем варианте «Лжеца» человек произносит всего одну фразу: «Я лгу», или говорит: «Высказывание, которое я сейчас произношу, является ложным». Традиционная лаконичная формулировка этого парадокса гласит: если лгущий говорит, что он лжет, то он одновременно лжет и говорит правду.

Данный парадокс можно переформулировать и так. Допустим, что на лицевой стороне карточки стоят слова: «На другой стороне этой карточки написано истинное высказывание» — и ничего более. Ясно, что эти слова представляют собой осмысленное утверждение. Перевернув карточку, мы находим на ее обороте слова: «На другой стороне этой карточки написано ложное высказывание» — и опять-таки ничего более. Предположим, что утверждение на лицевой стороне — истинно. Тогда утверждение на обороте должно быть истинным и, значит, утверждение на лицевой стороне должно быть ложным. Но если утверждение с лицевой стороны ложно, тогда утверждение на обороте также должно быть ложным и, следовательно, утверждение на лицевой стороне должно быть истинным. Выходит, что данное утверждение не может быть ни истинным, ни ложным. Но это противоречит принципу исключенного третьего. Парадокс ошеломляющий. Он произвел громадное впечатление на греков. Ходит даже легенда, что он привел к самоубийству некоего Филита Косского. Этот парадокс разбил Аристотель и многие другие логики, жившие позднее. Некоторые философы считали, что поскольку рассматриваемое утверждение содержит ссылку на самое себя, то оно просто не имеет смысла, а бессмысленные высказывания должны быть исключены из языка.

С развитием логики в нем стали видеть смешение двух языков: языка, на котором говорится о предметах, существующих в мире, и языка, служащего для описания самого такого «предметного» языка. В нашем обычном языке эти два уровня не различаются.

Было предложено другое объяснение, основанное на анализе одной весьма необычной особенности этого высказывания. Дело в том, что это высказывание одновременно является актом действия; причем как раз то, что в этом высказывании утверждается, в то же время становится и действием. Более того, высказывание и действие разорвать нельзя. Такие высказывания встречаются не так уж и редко. Например: «Я клянусь», «Я говорю», «Я лгу», и т.п. Высказывания такого рода называются перформативными и к ним как считают некоторые авторы, не применимы какие-либо оценки их истинности. Их истинность зависит от того, когда, кем и где они употребляются.

Выше было сказано, что парадокс «Лжец» возникает из-за смешения двух языков. Как же связан этот парадокс с ними. Еще античные философы заметили, что каждое высказывание естественного языка выражает определенную мысль, но не несет никакой информации о том, истинна ли эта мысль или нет. Более того, они показали, что именно это утверждение об истинности того или иного высказывания не может быть выражено в естественном языке. Рассуждали они следующим образом. Пусть A есть некоторое высказывание, например: «1 января шел снег», и пусть это событие действительно имело место. Но так как из содержания высказывания А не следует, что оно истинно, то необходимо дополнительное высказывание A1: «Высказывание A истинно». Нетрудно, однако, заметить, что истинность высказывания A1 тоже ниоткуда не следует. Поэтому необходимо новое высказывание А2: «Высказывание A1 истинно» и т.д. до бесконечности.

Предлагавшиеся решения

Нечёрные предметы, не являющиеся воронами

Источник парадокса лежит в том факте, что хотя утверждения «Все вороны чёрные» и «Все предметы, не являющиеся чёрными, не являются воронами», несомненно, эквивалентны, действие по нахождению чёрного ворона не имеет ничего общего с действием по нахождению нечёрного предмета, не являющегося вороном. Поэтому в реальной жизни наблюдение красных яблок не влияет на уверенность в истинности утверждения «Все вороны чёрные».

Философы предлагали несколько способов разрешения этого парадокса. Например, американский логик Нельсон Гудман предлагал дополнить индуктивную логику ограничением, согласно которому явление не должно рассматриваться как поддерживающее теорию «Все P{\displaystyle P} являются Q{\displaystyle Q}», если оно также поддерживает теорию «Ни одно из того, что не Q{\displaystyle Q}, не является P{\displaystyle P}».

Другие философы подвергали сомнению эквивалентность двух утверждений применительно к индуктивным умозаключениям. В этой концепции наблюдение красных яблок увеличивает уверенность в том, что все нечёрные предметы не являются воронами, без увеличения уверенности в том, что все вороны чёрные. Однако в классической логике, если наблюдатель знает, что два утверждения либо одновременно верны, либо одновременно ложны, он не может считать одно из них более соответствующим истине, чем другое.

Гудман, а затем и другой философ, Уиллард Куайн, предлагали концепцию так называемых проективных и непроективных предикатов. Утверждения, которые допускают обобщение с помощью индуктивной логики (такие, как «Все вороны чёрные»), они называли проективными предикатами, а утверждения, к которым индуктивная логика неприменима (например, «Все нечёрные предметы не являются воронами») — непроективными. Куайн предлагал определять, какие из предикатов являются проективными, а какие нет, на основе опыта и здравого смысла. Он указывал также, что непроективные предикаты не могут подтверждаться непосредственным наблюдением описываемых в них явлений, но подтверждаются наблюдением явлений, описываемых проективными предикатами, эквивалентными исходным. В этой концепции наблюдение нечёрного яблока не увеличивает вероятность не только того, что все вороны чёрные, но и того, что все нечёрные предметы не являются воронами; вместо этого оба утверждения подтверждаются только наблюдением чёрных воронов.

Объяснение

Впервые опубликовал и проанализировал парадокс философ из Гарвардского университета Роберт Нозик. Работа Нозика опиралась на такие разделы математики как теория игр и теория принятия решений.

Задача называется парадоксом, так как для её решения существует три[источник не указан 2712 дней] интуитивно логичных и внешне непротиворечивых способа рассуждения.

С одной стороны, если считать, что предсказатель может ошибаться, то независимо от того, какое предсказание сделал предсказатель, выгоднее выбрать обе коробки. При этом можно руководствоваться следующими соображениями: если был предсказан первый вариант, то игрок получит либо тысячу долларов, либо ничего. Если же было сделано второе предсказание, то игрок фактически выбирает между 1000000$ и 1001000$. Поэтому выбирая всегда обе коробки игрок получит больше денег.

С другой стороны, если считать, что сделав выбор, игрок повлияет на предсказание (которое будет безошибочным), то таких результатов как 0$ и 1001000$ (расхождений в предсказании и выборе игрока) не может получиться в принципе. Поэтому игрок может получить либо тысячу (если он выберет обе коробки, то вторая будет пустой), либо миллион (если выберет только закрытую).

Наконец, если считать, что предсказатель уже безошибочно предсказал будущее, то игроку не о чём беспокоиться: выбор уже сделан за него и до него, он лишь механически исполняет неизбежное[источник не указан 2712 дней].

Подробный обзор различных, в том числе и противоположных, взглядов на разрешение парадокса Ньюкома приведён в разделе «Математические игры» журнала Scientific American Мартином Гарднером (июль 1973) и профессором Нозиком (март 1974).

Существуют 2 ситуации в этой задаче: 1) когда предсказатель всегда правильно предсказывает и 2) когда предсказатель является обычным человеком. В первом случае выгоднее всегда выбирать закрытую коробку. Во втором случае выгоднее брать обе коробки. В общем случае, когда возможность выбирать является однократной и в отсутствии доказанных способностей достоверно предсказывать события у «предсказателя» выгоднее брать обе коробки.

В случае же, когда есть возможность многократного выбора коробок, и предсказатель не проявляет своих способностей предсказывать достоверно каждый раз Ваш выбор, в игру вмешивается психология человека. Предсказатель может получить возможность предсказать результат по мимике, длительности раздумий, повторяемым комбинациям выбора коробок (шаблонам поведения/склонности к определенным последовательностям действий) и, значит, выбор наиболее выгодного варианта становится зависимым от предыдущих действий испытуемого, то есть от его личности и не может быть дан однозначный вариант, подходящий всем.

Однако же, если предсказатель не проявляет своих способностей предсказывать достоверно каждый раз Ваш выбор, но по правилам игры ему нужно стараться предсказать, то для получения наибольшей выгоды следует всегда выбирать закрытую коробку, тогда ему придется туда класть 1000000$ каждый раз. Если в начале игры сообщить предсказателю, что Вы всегда будете выбирать закрытую коробку, то предсказатель не сможет намеренно ошибиться больше, чем N раз (необходимое количество событий для выявления закономерности), иначе он будет нарушать правила игры.

1.2 Устранение и объяснение парадоксов

Следует обратить внимание на одно важное различие. Устранение парадоксов и их разрешение — это вовсе не одно и то же

Устранить парадокс из некоторой теории — значит перестроить ее так, чтобы парадоксальное утверждение оказалось в ней недоказуемым.

Каждый парадокс опирается на большое число определений, допущений и аргументов. Его вывод в теории представляет собой некоторую цепочку рассуждений. Формально говоря, можно подвергнуть сомнению любое ее звено, отбросить его и тем самым разорвать цепочку и устранить парадокс. Во многих работах так и поступают и этим ограничиваются. Но это еще не разрешение парадокса. Мало найти способ, как его исключить, надо убедительно обосновать предлагаемое решение. Само сомнение в каком-то шаге, ведущем к парадоксу, должно быть хорошо обосновано.

Прежде всего, решение об отказе от каких-то логических средств, используемых при выводе парадоксального утверждения, должно быть увязано с нашими общими соображениями относительно природы логического доказательства и другими логическими интуициями. Если этого нет, устранение парадокса оказывается лишенным твердых и устойчивых оснований и вырождается в техническую по преимуществу задачу.

Кроме того, отказ от какого-то допущения, даже если он и обеспечивает устранение некоторого конкретного парадокса, вовсе не гарантирует автоматически устранения всех парадоксов. Это говорит о том, что за парадоксами не следует «охотиться» поодиночке. Исключение одного из них всегда должно быть настолько обосновано, чтобы появилась определенная гарантия, что этим же шагом будут устранены и другие парадоксы.

Однако надо иметь в виду, что непродуманный и неосторожный отказ от слишком многих или слишком сильных допущений может привести просто к тому, что получится хотя и не содержащая парадоксов, но существенно более слабая теория, имеющая только частный интерес.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector