Как выглядел марс миллионы лет назад? новая теория
Содержание:
- Его зовут Гилберт Левин, сейчас ему 69. А когда было 26, он был главным исследователем марсианской поверхности. По крайней мере, в США.
- Пригодность Марса для жизни в прошлом
- Размер, масса и орбита планеты Марс
- Структура и состав Марса
- В Сети появилось видео с 1,4 млн фотографий Марса в 4К
- Находки марсохода «Кьюриосити»
- Атмосфера Марса
- Структура Марса
- Поверхность Марса
- Метеорит ALH 84001
- Странное свечение
Его зовут Гилберт Левин, сейчас ему 69. А когда было 26, он был главным исследователем марсианской поверхности. По крайней мере, в США.
Не знаем как на Марсе, но на Земле жизнь — интересная штука. К примеру, открытие космического масштаба может совершить вовсе никакой не астроном. Гилберт Левин изначально вообще-то не интересовался никакими планетами, кроме своей родной. Он получил учёную степень по инженерии окружающей среды (так и называется профессия — Environmental engineering), работал в Департаменте здравоохранения, занимался контролем за загрязнением воздуха.
Однажды изобрёл уникальный метод проверять воду, еду и вообще всё на наличие вредных микробов — радиоизотопный: надо положить в проверяемую среду немного радиоактивных соединений и посмотреть, что будет. Если имеются искомые бактерии, то они будут поедать эти соединения и выделять радиоактивный газ, что непременно будет зафиксировано. Это ноу-хау и оказалось космическим. Дело в том, что оно позволяет искать не только какие-то именно болезнетворные микробы, но и микробы вообще. В NASA очень заинтересовались и пригласили молодого учёного к себе. Сказали, что есть мысль проверить на стерильность… Марс.
И вот талантливый инженер уже готовит знаменитых «Викингов» к решению вопроса века. Первый аппарат — Viking 1 — сел на Красной планете 20 июля 1976 года. Viking 2 последовал за ним 3 сентября того же года. Надо сказать, они в разных местах были: один на равнине Хриса, это западное полушарие, а второй — уже на равнине Утопия, гораздо правее и севернее.
Оба провели эксперимент доктора Левина: положили на марсианский грунт, так сказать, пищу для потенциальных бактерий — органику, помеченную природным радиоактивным изотопом углеродом-14. То есть, ежели там кто-то есть, он обязательно проглотит наживку и начнётся метаболизм — обмен веществ. Первый Viking подсовывал «еду» на освещённое солнцем место, второй — в тенёк, под камень. Такие манипуляции провели несколько раз. И видите ли, дорогие и многоуважаемые читатели, какая ситуация. Результаты-то, как бы это сказать… Положительные. В обоих местах. Четыре из шести первых тестов показали, что метаболизм пошёл.
Но сенсации не получилось. Опять-таки очень интересно: и один, и другой «Викинг» снова закидывали ту же удочку через неделю — и ничего. Поэтому в научном сообществе пожали плечами и сказали: ну, это, наверное, какой-нибудь химический процесс был, не биологический. В двух разных местах.
Проходит лет двадцать. К тому времени на Марсе побывал Mars Pathfinder, и он показал, что климат на Красной планете когда-то был намного лучше, то есть более тёплый и влажный. А на Земле меж тем нашли «чёрных курильщиков» — гидротермальные источники, вокруг которых микроорганизмы прекрасно себя чувствуют в совершенно немыслимых условиях. Левин в соавторстве с ещё одним исследователем — Барри Дигрегорио — издаёт книгу «Марс: живая планета». Учёные настаивают, что все возможные химические варианты на самом деле не так убедительны. И мир опять встретил это с недоверием.
Подобное аппарат запечатлел и в другие «солы». В СМИ эти шарики сравнили с грибами дождевиками, но в NASA предпочли ягоды, а именно — чернику. Правда, только для запоминающейся ассоциации, потому что на самом деле, как уверяют в космическом агентстве, этот урожай состоит из минерала под названием гематит, или красный железняк. Это разновидность железной руды.
Эти рыхлые шарики, богатые гематитом, размером с пулю для пневматического пистолета, внедряются в марсианскую скалу, как черника в кексе, и со временем высвобождаются в результате эрозии
Подпись к снимку, опубликованному
Ну хорошо, а как вам, к примеру, такое? Это уже Curiosity и 2016 год. Что, тоже гематит какой-то? Или у марсохода шуруп открутился?
Стоит ещё, пожалуй, напомнить о марсианских нашлёпках, очень похожих на земные строматолиты — это такие своеобразные постройки, которые сооружают цианобактерии.
Вкратце мы имеем: положительные результаты широко используемого микробиологического теста, подтверждения по итогам контрольных исследований, совпадение результатов в двух местах посадки «Викингов», провал попыток найти не биологическое объяснение
Гилберт Левин, главный исследователь программы «Викинг»
Со времён «Викингов» прошло уже сорок с лишним лет. На Земле жизнь идёт своим чередом — обычные люди с любопытством, а то и с ужасом рассматривают грибы и шурупы, хорошо информированные скептики делают своё дело. Ругаются. Опровергают. И только не менее, знаете ли, подробно проинформированный Гилберт Левин бросает очень простой вызов: докажите, что жизни на Марсе нет.
Пригодность Марса для жизни в прошлом
И все же — есть ли жизнь на Марсе? Существовала ли она в прошлом? У нас нет явных доказательств этого. Зато мы знаем, что теоретически существовать она могла. Предполагается, что 3,8 миллиардов лет назад на Марсе был океан, который покрывал от 19 до 36% северного полушария планеты. Из этой гипотезы следует, что тогда на Марсе было тепло и влажно, и вполне возможно, что там могли возникать какие-то формы жизни. Однако, к сожалению, эта гипотеза почти ничем не подкреплена. Существуют также предположения, что жизнь на Марсе могла исчезнуть вследствие падения метеоритов или попросту уйти в толщу коры Марса в микроскопических формах. Одно мы знаем наверняка: раньше на Марсе точно было больше воды, чем сейчас.
Размер, масса и орбита планеты Марс
Экваториальный радиус планеты Марс составляет 3396 км, а полярный – 3376 км (0.53 земного). Перед нами буквально половина земного размера, но масса – 6.4185 х 1023 кг (0.151 от земной). Планета напоминает нашу по осевому наклону – 25.19°, а значит на ней также можно отметить сезонность.
Экваториальный
радиус |
3396,2 км |
---|---|
Полярный радиус | 3376,2 км |
Средний радиус | 3389,5 км |
Площадь поверхности | 1,4437⋅108 км² 0,283 земной |
Объём | 1,6318⋅1011 км³ 0,151 земного |
Масса | 6,4171⋅1023 кг 0,107 земной |
Средняя плотность | 3,933 г/см³ 0,714 земной |
Ускорение свободного
падения на экваторе |
3,711 м/с² 0,378 g |
Первая космическая скорость | 3,55 км/с |
Вторая космическая скорость | 5,03 км/с |
Экваториальная скорость
вращения |
868,22 км/ч |
Период вращения | 24 часа 37 минут 22,663 секунды |
Наклон оси | 25,1919° |
Прямое восхождение
северного полюса |
317,681° |
Склонение северного полюса | 52,887° |
Альбедо | 0,250 (Бонд) 0,150 (геом.) |
Видимая звёздная величина | −2,91m |
Максимальное расстояние от Марса до Солнца (афелий) – 249.2 млн. км, а приближенность (перигелий) – 206.7 млн. км. Это приводит к тому, что на орбитальный проход планета тратит 1.88 лет.
Перигелий | 2,06655⋅108 км 1,381 а.е. |
---|---|
Афелий | 2,49232⋅108 км 1,666 а. е. |
Большая полуось | 2,2794382⋅108 км 1,523662 а. е. |
Эксцентриситет
орбиты |
0,0933941 |
Сидерический период обращения | 686,98 дней |
Синодический период обращения | 779,94 дней |
Орбитальная скорость | 24,13 км/с (средняя) |
Наклонение | 1,85061° относительно плоскости эклиптики 5,65° относительно солнечного экватора |
Долгота восходящего узла | 49,57854° |
Аргумент перицентра | 286,46230° |
Спутники | 2 |
Структура и состав Марса
Марс относится к планетам земной группы, повторяя структуру Земли, поэтому наблюдается дифференциация, то есть наличие слоев, где плотные материалы группируются возле центра. Ядро охватывает примерно 1700-1850 км и представлено серой, железом и никелем. Можете изучить состав и строение Марса на фото.
Внутреннее строение Марса
Вокруг Марса расположена силикатная мантия, которая ранее могла похвастаться тектонической и вулканической подвижностью. В коре присутствует магний, железо, кремний, кислород, кальций, алюминий и калий. Красный оттенок появляется из-за окислительного процесса железной пыли.
Магнетизм и геологическая активность
Марсианское ядро по большей части плотное и лишено движения. Из-за этого планета не обладает сплошным магнитным полем и вынуждена принимать огромное количество космических лучей. Но модели показывают, что древний Марс обладал магнитным полем, так как остались намагниченные территории.
Полеомагнетизм минералов напоминает магнитные поля, замеченные на некоторых океанических земных поверхностях. После этого возникла идея, что у Марса была тектоническая активность, прекратившаяся 4 миллиардов лет назад.
Мантия также лишена тектонической активности, поэтому не может деформироваться или поучаствовать в вырывании углерода из атмосферы. Средняя толщина коры – 50 км, но может достигать и 125 км. Представлена базальтом, выплеснутым при вулканической активности миллиарды лет назад.
Формирование и эволюция
Большая часть состава Марса основывается на расстоянии от Солнца. Элементы с низкими показателями температуры кипения (хлор, сера и фосфор) чаще попадаются на Красной планете, чем у нас. Поэтому считают, что они удалились из ближайших к Солнцу районов ветрами.
После формирования все планеты прошли этап интенсивной бомбардировки, где примерно 60% Марса попало под удар.
Северо-Полярный бассейн – крупная синяя территория в северной части топографической марсианской карты
Кратерным образованиям удалось хорошо сохраниться из-за медленного процесса эрозии. Равнина Эллады считается крупнейшим кратером, простирающимся на 2300 км и на 9 км в глубину.
Считают, что наиболее масштабное событие случилось в северном полушарии. Это Северный Полярный бассейн с параметрами 10600 км на 8500 км. Скорее всего, в эту территорию врезалось тело, которое по размерам походило на Плутон. Ниже расписан состав поверхности Марса по химическим элементам.
Состав поверхности Марса
Также отмечают процесс остывания планеты, что могло произойти из-за остановки конвекции внутри внешнего ядра. Это привело к исчезновению магнитного поля.
Поверхность Марса располагает каналами и оврагами, по которым раньше могла течь вода. По крайней мере, частично сформировались от водной эрозии. Некоторые охватывают 2000 км в длину и 100 км в ширину.
- Интересные факты о Марсе;
- Колонизация Марса;
- Марс и Земля;
- Есть ли жизнь на Марсе;
- Терраформирование Марса
- Когда мы отправим людей на Марс?
- Сравнение Марса и Земли
- Как Земля выглядит с Марса?
- Что такое марсианское проклятие?
- Когда открыли Марс?
Положение и движение Марса
- Орбита Марса;
- Сезоны на Марсе
- Как далеко Марс от Солнца?
- Сближение Марса
- Как далеко находится Марс?
- Сколько лететь до Марса;
- День на Марсе;
- Год на Марсе;
Строение Марса
- Размеры Марса;
- Кольца Марса;
- Состав Марса;
- Атмосфера Марса;
- Воздух на Марсе;
- Масса Марса;
Поверхность Марса
- Поверхность Марса;
- Лед на Марсе
- Радиация на Марсе
- Вода на Марсе;
- Температура на Марсе;
- Гравитация на Марсе;
- Цвет Марса;
- Почему Марс красный;
- Насколько холодный Марс;
- Вулканы на Марсе;
- Вулкан Олимп;
- Долина Маринер;
- Лицо на Марсе;
- Пирамида на Марсе;
В Сети появилось видео с 1,4 млн фотографий Марса в 4К
Американское космическое агентство NASA отправило на Марс такие зонды, как «Оппортьюнити» и Кьюриосити, которые с момента приземления регулярно посылали «фотографии Марса» на Землю. За время их миссии в Nasa скопилось более 1,4 млн фотографий в высоком разрешении. На их основе в Сети появился ролик, в котором были объединены изображения в супервысоком качестве.
Ниже вы можете увидеть изображение Кратера Гейла, полученное марсоходом Кьюриосити, который исследует Марс с 2012 года.
Кратер Гейла имеет диаметр 154 км. Как полагают ученые, он образовался от 3,8 до 3,5 миллиарда лет назад. Название «Гейл» дано в честь астронома-любителя Вальтера Фредерика Гейла, который наблюдал Марс в 19 веке.
Песчаная местность под названием Rock Nest внутри кратера Гейла выглядит следующим образом.
Гора спереди – это гора Эолидана высотой 5500 метров. Находится в центре кратера Гейла.
Изображение Плато Меридиана у экватора Марса. Исследования на Плато Меридиана показали, что равнины Меридиана, вероятно, были затоплены кислыми водами с высокой соленостью в течение длительных периодов времени.
Кабо-Верде, мыс на краю кратера Виктория на Плато Меридиана, был сфотографирован на волнистой земле.
Ниже приведены изображения , обследованные марсоходом «Оппортьюнити» в течение года и двух месяцев, с июля 2015 года по сентябрь 2016 года. Бесплодная земля простирается до самого горизонта.
Первый пробуренный камень выглядит следующим образом. Поскольку камень содержал железо и серу, Nasa пришла к выводу, что на Марсе есть субстрат, на базе которого могли родиться микроорганизмы. Камень получил имя Джон Кляйн в честь заместителя главного директора миссии, который умер в 2011 году.
Ниже приведено изображение района Глен Торридон, названного так в честь Шотландии.
А этот снимок похож на маленькое селфи марсохода.
Изображение из района, который богат сульфатами. Марсоход Кьюриоситиначал движение по этому пути в 2020 году, чтобы исследовать горную массу.
Вид на мыс Пилингер, выходящий на весь кратер Индевор, диаметром 22 км от западного края.
Селфи Кьюриосити в пустыне Намиб на Марсе. Название происходит от пустыни Намиб на Земле.
Скалы Барнс расположены в кратере Эндьюранс.
Рокнест – это большое количество полевых шпатов, пироксенов, оливинов и т. д.
Область под названием формация Йеллоунайф Бэй расположена в кратере Гейл. Исследование Кьюриоситиподтверждает, что вода когда-то могла существовать в Йеллоунайф.
Фотография пустыни Намиб, часть 2. Большая дюна видна спереди.
Кьюриоситина фоне пустыни Намиб, Марс.
Хребет Веры Рубин, который Кьюриосити исследует более года. Хребет назван в честь астронома Веры Рубин, которая доказала существование темной материи в результате наблюдения за скоростью вращения галактики Андромеды.
По данным научного канала Elder Fox Documentaries, который обобщил эти фотографии на YouTube, у Кьюриосити есть высокопроизводительная камера, но большую часть времени (за исключением 8 минут в день) скорость связи с Землей составляет всего 32 в секунду (это около 4 ), поэтому невозможно транслировать картинку в прямом эфире с Марса.
Находки марсохода «Кьюриосити»
«Кьюриосити» — робот на колесах размером с автомобиль, отправленный на Марс в 2011 году. Его миссией было исследование органических соединений, биологических процессов и марсианской атмосферы. Он должен был помочь ученым приблизиться к ответам на важнейшие вопросы о Марсе. Он приземлился на Марсе в 2012 году, и его миссия продолжается.
С тех пор «Кьюриосити» совершил множество находок, которые дали ученым важную информацию о пригодности Марса для обитания. Здесь были обнаружены почти все химические элементы, необходимые для жизни, включая серу, азот, водород, кислород, фосфор и, «возможно», углерод. Также «Кьюриосити» обнаружил доказательства того, что на Марсе были озера или реки, не слишком соленые для того, чтобы там могли существовать разные формы жизни. В 2013 году «Кьюриосити» определила, что на Марсе имеются почвы с нейтральной кислотностью, пригодные для жизни микроорганизмов.
Атмосфера Марса
По своему составу атмосфера Марса очень похожа на атмосферу Венеры, одной из наименее гостеприимных атмосфер во всей Солнечной системе. Основным компонентом в обеих средах является двуокись углерода (95% для Марса, 97% для Венеры), но есть большое отличие – парниковый эффект на Марсе отсутствует, поэтому температура на планете не превышает 20°C, в отличие от 480°С на поверхности Венеры. Такая огромная разница связана с разной плотностью атмосфер этих планет. При сопоставимой плотности, атмосфера Венеры чрезвычайно толстая, тогда как Марс обладает довольно тонким атмосферным слоем. Проще говоря, если бы толщина атмосферы Марса была более значительна, то он напоминал бы Венеру.
Кроме того Марс обладает очень разреженной атмосферой, — атмосферное давление составляет лишь около 1% от давления на Земле. Это эквивалентно давлению в 35 километров над поверхностью Земли.
Одним из самых первых направлений в исследовании марсианской атмосферы является ее влияние на присутствие воды на поверхности. Не смотря на то, что полярные шапки содержат воду в твердом состоянии, а воздух содержит водяной пар, образующийся в результате морозов и низкого давления, сегодня все исследования указывают на то, что «слабая» атмосфера Марса не способствует существованию воды в жидком состоянии на поверхности планеты.
Тем не менее, полагаясь на последние данные марсианских миссий, ученые уверены, что вода в жидком виде на Марсе существует и находится она на один метр ниже поверхности планеты.
Вода на Марсе: предположение / wikipedia.org
Однако не смотря на тонкий атмосферный слой Марс обладает достаточно приемлемыми по земным меркам погодными условиями. Наиболее экстремальными формами этой погоды являются ветра, пыльные бури, морозы и туманы. Как результат такой погодной деятельности в некоторых районах Красной планеты были замечены значительные следы эрозии.
Еще одним интересным пунктом о марсианской атмосфере можно указать то, что как утверждает сразу несколько современных научных исследований, в далеком прошлом она была достаточно плотной для существования на поверхности планеты океанов из воды в жидком состоянии. Однако, согласно тем же исследованиям, атмосфера Марса была резко изменена. Ведущей версией такого изменения на данный момент является гипотеза о столкновении планеты с другим достаточно объемным космическим телом, что привело потере Марсом большей части своей атмосферы.
Структура Марса
Подобно другим планетам земной группы, в интерьере Марса выделяют три слоя: кора, мантия и ядро.Не смотря на то, что точные измерения еще не сделаны, ученые сделали определенные прогнозы о толщине коры Марса на основании данных о глубине долины Маринер. Глубокая, обширная система долины, расположенной в южном полушарии, не могла бы существовать если бы кора Марса не была значительно толще земной. Предварительные оценки указывают на то, что толщина коры Марса в северном полушарии составляет порядка 35 километров и около 80 километров в южном.
Достаточно много исследований было посвящено ядру Марса, в частности выяснению того, является ли оно твердым или жидким. Некоторые теории указали на отсутствие достаточно мощного магнитного поля как признака твердого ядра. Тем не менее, в последнее десятилетие все большую популярность набирает гипотеза о том, что ядро Марса жидкое, по крайней мере, частично. На это указало открытие намагниченных пород на поверхности планеты, что может быть признаком того, что Марс обладает или обладал жидкой сердцевиной.
Поверхность Марса
Поверхность Марса обладает двумя значительными особенностями, которые, по интересному стечению обстоятельств, связаны с различиями в полушариях планеты. Дело в том, что северное полушарие имеет достаточно гладкий рельеф и всего несколько кратеров, тогда как южное полушарие буквально испещрено возвышенностями и кратерами разной величины. Помимо топографических различий, обозначающих разницу в рельефе полушарий, есть и геологические, — исследования указывают на то, что области в северном полушарии гораздо более активны, нежели в южном.
На поверхности Марса находится самый большой из известных на сегодняшний день вулканов — Olympus Mons (Гора Олимп) и самый крупный из известных каньонов – Mariner (долина Маринер). В Солнечной системе пока не найдено ничего более грандиозного. Высота Горы Олимп составляет 25 километров (это в три раза выше Эвереста, самой высокой горы на Земле), а диаметр основания 600 километров. Длина долины Маринер составляет 4000 километров, ширина 200 километров, а глубина почти 7 километров.
Долина Маринер на Марсе
На сегодняшний день самым значительным открытием в отношении марсианской поверхности было обнаружение каналов. Особенностью этих каналов является то, что они, по мнению экспертов NASA, были созданы проточной водой, и, таким образом, являются наиболее достоверным доказательством теории о том, что в далеком прошлом поверхность Марса значительно напоминала земную.
Наиболее известной перейдолией связанной с поверхностью Красной планеты является так называемое «Лицо на Марсе». Рельеф действительно очень напоминал человеческое лицо тогда, когда был получен первый снимок определенной местности космическим аппаратом Viking I в 1976 году. Многие люди в то время посчитали этот снимок настоящим доказательством того, что на Марсе существовала разумная жизнь. Последующие снимки показали, что это всего лишь игра освещения и человеческая фантазия.
Метеорит ALH 84001
Человечеством обнаружено более 61 000 марсианских метеоритов; каждый из них вписывается в какую-либо категорию. Однако метеорит ALH 84001 выбивается из всех существующих классификаций. С момента обнаружения он является предметом постоянных споров. Ему около 4,1 миллиарда лет, и, судя по исследованию, проведенному в 2005 году, он происходит из долин Маринер. Химический анализ показывает, что в период, когда он образовался, жидкая вода могла существовать на Марсе в избытке. Под микроскопом на метеорите видны крохотные бактерии — или нечто, что их напоминает. О ALH 84001 до сих пор ведутся споры, однако он вполне может быть доказательством существования внеземной жизни. Скептики утверждают, что «инопланетные бактерии» поселились на метеорите уже в земной атмосфере, однако на момент обнаружения они были меньше любой клеточной формы жизни Земли.
Странное свечение
Последние изображения Марса являются результатом длительных наблюдений с космического аппарата MAVEN, который вращается на орбите Марса с 2014 года. Для получения этих изображений, запечатлевших ультрафиолетовое излучение, использовалась специальная камера.
Согласно данным с космического аппарата, верхний слой атмосферы Марса становится зеленым три раза за ночь весной и осенью, в то время как полюса светятся почти все время в течение года. Эти данные были подтверждены в ходе наблюдений с космического корабля Европейского космического агентства Mars Express, который также находится на орбите Марса.
Однако, как оказалось, это зеленое свечение, появляющееся на изображениях, привлекших внимание пользователей социальных сетей по всему миру, не настоящее. Оно отражает лишь те области, которые пульсируют в ультрафиолетовом спектре на поверхности Марса
Что касается человеческого глаза, то он фиксирует только видимый свет, а не весь диапазон, включающий также ультрафиолетовый и инфракрасный свет. Ученые изучают последние, чтобы иметь возможность понять характер движения и интенсивность этих лучей.