10 фактов из физики, о которых вы не догадываетесь

Содержание:

Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц — корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной. Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это.

Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту. Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения.

Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова. Результаты, полученные Галилеем. — следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

Изменение агрегатных состояний вещества

Агрегатное состояние – состояние вещества в определенных условиях, в конкретном диапазоне давления и температуры, которое определяет свойства вещества, его способность сохранять форму и объем, либо менять их. К таким состояниям традиционно относится твердое, жидкое и газообразное.

Но это звучит скучно, поэтому на помощь приходит физика для детей. Легко пронаблюдать за изменением агрегатных состояний можно на примере обыкновенной воды. Сначала проверьте ребенка: если пролить немного воды на пол и не вытереть, останется ли лужица там навсегда или нет? А что будет с водой, если ее поместить в холодильник? Это и есть агрегатные состояния вещества! Оказывается, такие привычные физические явления на кухне почти каждый день случаются у нас под носом.

Читать также:

Эксперименты с водой, о которых вы не знали

А почему так происходит? Виной всему не волшебство, а физика! Вода – это жидкость, а жидкость – промежуточное состояние между твердыми и газообразными веществами. Твердое состояние, в данном случае лед, образуется, когда вода подвергается температуре замерзания (ниже 0°C), а газ – водяной пар – образуется при температуре кипения (100°C). При температуре же от 0°C до 100°C вода пребывает в жидком состоянии – а все потому, что межмолекулярное притяжение при таких отметках не настолько сильное, как в твердом состоянии, но и не такое слабое, как в газообразном.

Переход воды в пар, то есть испарение, происходит тогда, когда молекулы воды с открытой поверхности получают энергию – солнечную или от комнатной температуры, и начинают двигаться хаотично. Сила притяжения между ними слабеет. При понижении же температуры кинетическая энергия молекул опускается, и силы притяжения усиливаются.

Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=G(mM/r2), оставалось определить значение гравитационной постоянной G. Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала.

Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо. Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы — коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы.

 Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

Теплопроводность тел

Следующее физическое явление, которое рассматривает физика для детей на примерах из жизни – теплопроводность, то есть способность различных материальных тел к теплообмену, передаче энергии. Но как объяснить ребенку этот процесс? Да хотя бы на примере нагрева супа в кастрюльке, либо воды в чайнике!

Представим: мы поставили суп на плиту. Температура кастрюли начнет подниматься, и из-за разницы температур движение частиц будет усиливаться, что поспособствует передаче теплоты от огня к посуде, и от нагретой посуды – к супу. Но не у всех тел теплопроводность одинакова: например, металлы обладают более высокой теплопроводностью, нежели, допустим, древесина и воздух. Поэтому суп мы нагреваем в металлической кастрюле, чтобы он быстрее нагрелся – однако и остынет, он быстро. Однако, если мешать суп деревянной ложкой/лопаткой, то она будет медленно нагреваться, обладая малой теплопроводностью, но благодаря этому и остынет медленно.

Имеет физика для детей еще одну такую интересную штуку касаемо теплопроводности, как конвекция – такой вид теплопередачи, при котором энергия передается потокообразно, либо естественным, либо принудительным путем. То есть, когда супчик просто стоит на плите, он нагревается естественным путем, но когда его начнут помешивать ложкой – конвекция будет принудительной.

Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало.

Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 10-8см с плавающими внутри отрицательными электронами. В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в «рыхлом» атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома — массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Новости университета

Абитуриенты из Китая выбирают ТОГУ

14 августа, 2020

Конкурс «Наши рекорды к юбилею Победы» продолжается в ТОГУ

14 августа, 2020

Успейте подать заявление на бюджетные места в ТОГУ

14 августа, 2020

В ТОГУ завершил работу интернет-проект «ЯРМАРКА ВАКАНСИЙ.RU»

13 августа, 2020

Абитуриенты-2020: «Выбираю ТОГУ!»

13 августа, 2020

Пять проектов ученых ТОГУ получили грантовую поддержку от Правительства Хабаровского края

13 августа, 2020

Профессор Илдус Ярулин: «Мы гарантируем получение качественного университетского образования»

12 августа, 2020

Качество знаний обучающихся ТОГУ в области естественных наук высоко оценило международное рейтинговое агентство RUR

12 августа, 2020

О проектах ученых ТОГУ рассказали в прямом эфире

12 августа, 2020

Диффузия

Диффузия – одно из самых интересных и понятных физических явлений, о которых может рассказать физика, но и оно порой бывает сложным для детей. А между тем мы постоянно наблюдаем за этим процессом в жизни, в частности, на кухне. Диффузией называют взаимное проникновение, смешивание двух веществ, схожих по структуре, до однородного состояния. Диффузия происходит благодаря кинетической энергии молекул тех веществ – именно она и приводит их в движение.

Читать также:

Крутые научные эксперименты, которые стоит показать детям!

Один из самых доступных примеров диффузии жидкостей, которые знает физика для детей – заваривание чая в кипятке. Пусть ребенок бросит в воду чайный пакетик либо горсточку чайных листьев, не размешивая – тогда вы сможете понаблюдать, как чайная заварка смешивается с чистой водой. И чем вода горячее, тем быстрее будет происходить процесс смешивания.

А в твердых веществах примером для детей может стать засаливание овощей на зиму: кристаллики соли, попав в воду для будущего рассола, распадутся, образуя ионы хлора и натрия, которые со временем проникнут между молекулами засаливаемых овощей, будь-то помидоры, огурцы либо даже грибы. Этот тип диффузии – самый медленный.

Но быстрее всего происходит диффузия в газах. Дети точно знают, насколько быстро по дому распространяется вкусный запах маминой стряпни из кухни – именно так ароматы еды смешиваются с молекулами воздуха в помещении.

Опыт 3 «Волшебная вода»

Оборудование: стакан с водой, лист плотной
бумаги.

Проведение: Этот опыт называется «Волшебная
вода». Наполним до краев стакан с водой и прикроем листом
бумаги. Перевернем стакан. Почему вода не выливается из
перевернутого стакана?

Объяснение: Вода удерживается атмосферным
давлением, т. е. атмосферное давление больше давления,
производимого водой.

Замечания:Опыт лучше получается с
толстостенным сосудом.
При переворачивании стакана лист бумаги нужно придерживать
рукой.

Опыт 4 «Тяжелая газета»

Оборудование:рейка длиной 50-70 см, газета,
метр.

Проведение: Положим на стол рейку, на нее
полностью развернутую газету. Если медленно оказывать
давление на свешивающийся конец линейки, то он опускается, а
противоположный поднимается вместе с газетой. Если же резко
ударить по концу рейки метром или молотком, то она ломается,
причем противоположный конец с газетой даже не поднимается.
Как это объяснить?

Объяснение: Сверху на газету оказывает
давление атмосферный воздух. При медленном нажатии на конец
линейки воздух проникает под газету и частично
уравновешивает давление на нее. При резком ударе воздух
вследствие инерции не успевает мгновенно проникнуть под
газету. Давление воздуха на газету сверху оказывается больше,
чем внизу, и рейка ломается.

Замечания: Рейку нужно класть так, чтобы ее
конец 10 см свешивался. Газета должна плотно прилегать  к
рейке и столу.

 Опыт 5 «Нервущаяся бумага»

Оборудование:два штативами с муфтами и
лапками, два бумажных кольца, рейка, метр.

Проведение: Бумажные кольца подвесим на
штативах на одном уровне. На них положим рейку. При резком
ударе метром или металлическим стержнем посередине рейки она
ломается, а кольца остаются целыми. Почему?

Объяснение: Время взаимодействия очень мало.
Поэтому рейка не успевает передать полученный импульс
бумажным кольцам.

Замечания:Ширина колец – 3 – см. Рейка
длиной 1 метр, шириной 15-20 см и толщиной 0,5 см.

Оборудование:штатив с двумя муфтами и
лапками, два демонстрационных динамометра

Проведение: Укрепим на штативе два
динамометра – прибора для измерения силы. Почему их
показания одинаковы? Что это означает?

Объяснение: тела действуют друг на друга с
силами равными по модулю и противоположными по направлению.
(третий закон Ньютона)

Опыт 7

Оборудование: два одинаковых по размеру и
массе листа бумаги (один из них скомканный)

Проведение:Одновременно отпустим оба листа с
одной и той же высоты. Почему скомканный лист бумаги падает
быстрее?

Объяснение: скомканный лист бумаги падает
быстрее, так как на него действует меньшая сила
сопротивления воздуха.

А вот в вакууме они падали бы одновременно.

Опыт 8 « Как
быстро погаснет свеча»

Оборудование: стеклянный сосуд с водой,
стеариновая свеча, гвоздь, спички.

Проведение: Зажжем свечу и опустим в сосуд  с
водой. Как быстро погаснет свеча?

Объяснение: Кажется, что пламя зальется водой,
как только сгорит отрезок свечи, выступающий над водой, и
свеча погаснет.

Но, сгорая, свеча уменьшается в весе и под
действием архимедовой силы всплывает.

Замечание:К концу свечи прикрепить снизу
небольшой груз (гвоздь) так, чтобы она плавала в воде.

Опыт 9 «Несгораемая
бумага»

Оборудование: металлический стержень, полоска
бумаги, спички, свеча (спиртовка)

Проведение: Стержень плотно обернем полоской
бумаги и внесем в пламя свечи или спиртовки. Почему бумага
не горит?

Объяснение: Железо, обладая хорошей
теплопроводностью, отводит тепло от бумаги, поэтому она не
загорается.

Опыт 10 «Несгораемый
платок»

Оборудование: штатив с муфтой и лапкой,
спирт, носовой платок, спички

ПроведениеЗажать в лапке штатива носовой
платок (предварительно смоченный водой и отжатый), облить
его спиртом и поджечь. Несмотря на пламя, охватывающее
платок, он не сгорит. Почему?

Объяснение:Выделившаяся при горении спирта
теплота полностью пошла на испарение воды, поэтому она не
может зажечь ткань.

Удивительные случаи из жизни известных физиков

Выдающиеся ученые в большинстве своем фанатики своего дела, способные ради науки на все. Так, например, Исаак Ньютон, пытаясь объяснить механизм восприятия света человеческим глазом, не побоялся поставить опыт на себе. Он ввел в глаз тонкий, вырезанный из слоновой кости зонд, одновременно надавив на тыльную часть глазного яблока. В результате ученый увидел перед собой радужные круги и доказал таким образом: видимый нами мир — не что иное, как результат давления света на сетчатку.

Русский физик Василий Петров, живший в начале XIX века и занимавшийся изучением электричества, срезал на своих пальцах верхний слой кожи, чтобы повысить их чувствительность. В то время еще не существовало амперметров и вольтметров, позволявших измерять силу и мощность тока, и ученому приходилось делать это наощупь.

А вот француз Жан-Антуан Нолле предпочел поставить эксперимент на других, Проводя в середине XVIII века эксперимент по вычислению скорости передачи электрического тока, он соединил 200 монахов металлическими проводами и пропустил по ним напряжение. Все участники эксперимента дернулись практически одновременно, и Нолле сделал вывод: ток бежит по проводам ну о-о-очень быстро.

Историю о том, что великий Эйнштейн был в детские годы двоечником, знает практически каждый школьник. Однако на самом деле Альберт учился очень хорошо, а его знания по математике были гораздо глубже, чем того требовала школьная программа.

Когда юный талант попытался поступить в высшую политехническую школу, он набрал высший балл по профильным предметам — математике и физике, но по остальным дисциплинам у него оказался небольшой недобор. На этом основании ему было отказано в приеме. На следующий год Альберт показал блестящие результаты по всем предметам, и в возрасте 17 лет стал студентом.

Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин «электрон», обозначавший некую частицу — носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально.

В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи — это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны. Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента.

Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х10-10 электростатических единиц.

Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. 

 Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

В черном-черном океане живет черная-черная рыба с альбедо кожи 0.5%

Черным океан мы назвали потому, что рыба живет на большой глубине, куда практически не проникают солнечные лучи. Там царит вечная ночь. А рыба реально черная — поверхность тела поглощает 99,5% света.
На фото рыба не кажется такой уж черной, потому что вспышки камеры очень яркие. Даже 0,5% отраженного света хватило, чтобы увидеть рыбку во всей красе.
Природа ничего не делает просто так. Некоторые существа, проживающие на дне океана, люминесцируют, привлекая жертв, плывущих на свет. Это разумный способ выживания. Черная рыба использует свою расцветку для того, чтобы спрятаться от хищников. Это альтернативный способ выжить.

10 занимательных фактов из мира физики

Сейчас мы ответим на вопросы, которые волнуют многих людей.

Зачем машинист поезда сдает назад перед тем, как тронуться?

Всему виной сила трения покоя, под воздействием которой находятся стоящие без движения вагоны поезда. Если паровоз просто поедет вперед, он может не сдвинуть состав с места. Поэтому он слегка отталкивает их назад, сводя к нулю силу трения покоя, а затем придает им ускорение, но уже в другом направлении.

Существуют ли одинаковые снежинки?

Большинство источников утверждает: в природе не существует одинаковых снежинок, поскольку на их формирование влияет сразу несколько факторов: влажность и температура воздуха, а также траектория полета снега. Однако занимательная физика утверждает: создать две снежинки одинаковой конфигурации можно. 

Это экспериментально подтвердил исследователь Карл Либбрехт. Создав в лаборатории абсолютно идентичные условия, он получил два внешне совершенно одинаковых снежных кристалла. Правда, следует отметить: кристаллическая решетка у них все-таки была разной.

Где в Солнечной системе находятся самые большие запасы воды?

Никогда не догадаетесь! Самым объемным хранилищем водных ресурсов нашей системы является Солнце. Вода там находится в виде пара. Его наибольшая концентрация отмечена в местах, которые мы называем «пятнами на Солнце». Ученые даже высчитали: в этих районах температура на полторы тысячи градусов ниже, чем на остальных участках нашей горячей звезды.

Какое изобретение Пифагора было создано для борьбы с алкоголизмом?

Согласно легенде, Пифагор, дабы ограничить употребление вина, сделал кружку, которую можно было наполнить хмельным напитком только до определенной метки. Стоило превысить норму хоть на каплю, и все содержимое кружки вытекало наружу. В основе этого изобретения лежит действие закона о сообщающихся сосудах. Изогнутый канал в центре кружки не позволяет ее наполнять до краев, «избавляя» емкость от всего содержимого в случае, когда уровень жидкости находится выше изгиба канала.

Можно ли превратить воду из проводника в диэлектрик?

Занимательная физика утверждает: можно. Проводниками тока являются не сами молекулы воды, а содержащиеся в ней соли, точнее их ионы. Если их удалить, жидкость потеряет способность проводить электрический ток и станет изолятором. Другими словами, дистиллированная вода является диэлектриком.

Как выжить в падающем лифте?

Многие считают: нужно подпрыгнуть в момент удара кабины о землю. Однако данное мнение неверно, поскольку предугадать, когда произойдет приземление, невозможно. Поэтому занимательная физика дает другой совет: лягте спиной на пол лифта, стараясь максимально увеличить площадь соприкосновения с ним. В этом случае сила удара будет направлена не на один участок тела, а равномерно распределится по всей поверхности — это значительно увеличит ваши шансы на выживание.

Почему птица, сидящая на проводе высокого напряжения, не гибнет от удара током?

Тела пернатых плохо проводят электрический ток. Прикасаясь лапами к проводу, птица создает параллельное соединение, но поскольку она является не самым лучшим проводником, заряженные частицы движутся не через нее, а по кабельным жилам. Но стоит птахе соприкоснуться с заземленным предметом, и она умрет.

Горы находятся к источнику тепла ближе равнин, но на их вершинах гораздо холоднее. Почему?

Этот феномен имеет очень простое объяснение. Прозрачная атмосфера беспрепятственно пропускает солнечные лучи, не поглощая их энергию. Зато почва отлично впитывает тепло. Именно от нее потом и прогревается воздух. Причем чем выше его плотность, тем лучше он удерживает получаемую от земли тепловую энергию. Но высоко в горах атмосфера становится разреженной, а потому и тепла в ней «задерживается» меньше.

Могут ли засосать зыбучие пески?

В фильмах нередко встречаются сцены, где люди «тонут» в зыбучих песках. В реальной жизни — утверждает занимательная физика — подобное невозможно. Выбраться самостоятельно из песчаного болота у вас не получится, ведь чтобы вытащить только одну ногу, придется приложить столько усилий, сколько тратится на подъем легкового автомобиля средней массы. Но и утонуть вы тоже не сможете, поскольку имеете дело с неньютоновской жидкостью.

Спасатели советуют в таких случаях не делать резких движений, лечь спиной вниз, раскинуть руки в стороны и ждать помощи.

Существует ли в природе ничто, смотрите в видео:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector