Сверхмассивная чёрная дыра

Изучение гравитационных волн

В будущем исследователи ожидают больше подобных открытий. Все потому, что в ближайшие несколько лет должна начать работу новая гравитационно-волновая обсерватория – гравитационно-волновой детектор Камиоки (KAGRA). С помощью KAGRA, LIGO и VIRGO ученые рассчитывают сузить поиски местоположения массивных столкновений в три раза. Это также поможет улучшить оборудование телескопов для более точного обнаружения этих событий, вызывающих гравитационные волны и обнаружения испускаемого ими света. Как полагают авторы научной работы, новая глобальная сеть детекторов в конечном итоге может обнаруживать до 100 столкновений в год.

Черные дыры в центрах галактик

Это может вас удивить, но галактики, как и все другие объекты во Вселенной, а также все живые существа на нашей планете рождаются, живут, развиваются и умирают. На протяжении последних 15 лет астрономы пытались доказать существование сверхмассивной черной дыры в центре Млечного Пути. Получить доказательства удалось с помощью Очень большого телескопа (VLT) Европейской космической обсерватории (ESO).

Наблюдая за орбитальным движением звезд вокруг центра галактики, исследователи пришли к выводу, что звезды должны двигаться по орбитам под действием колоссального гравитационного притяжения сверхмассивной черной дыры. Согласно полученным результатам, масса Стрельца А* почти в три миллиона раз превышает массу нашего Солнца.

Учитывая тот факт, что галактика Млечный Путь, как говорил о ней Стивен Хокинг, «ничем не примечательна», исследователи полагают, что в центрах всех галактик находятся сверхмассивные черные дыры. Ислледователи также отмечают, что Стрельца А* окружают десятки звезд и несколько крупных облаков газа, которые время от времени сближаются и проходят на опасном расстоянии от черной дыры. Так, в одной из предыдущих статей мы рассказывали об удивительной звезде S2, которая вращается, словно танцуя, на экстремально близком расстоянии от этого космического монстра.

Так как большинство галактик эволюционируют, сливаясь с другими галактиками, тот факт, что в центре Млечного Пути может быть не одна черная дыра не кажется таким удивительным. Более того, даже если сегодня второй черной дыры рядом со Стрельцом А* нет, это не значит, что так было всегда. Не исключено, что в далеком прошлом у черной дыры был «младший брат» или «сестра». Или он есть и сегодня. Но если так, почему мы о нем ничего не знаем?

Составное инфракрасное изображение центра Млечного Пути

По мнению Клиффорда Уилла, выдающегося профессора физики из университета Флориды и соавтора исследования, опубликованного в журнале The Astrophysical Journal Letters, если бы существовал спутник Стрельца А*, то его гравитация повлияла бы на орбиты звезд, вращающихся вокруг. Так исследователи и обнаружили бы вторую черную дыру. Как пишут авторы работы, это похоже на то, как орбита Юпитера возмущает орбиту Урана. Это происходит потому, что Юпитер обладает собственным гравитационным притяжением.

Понимание этого процесса интересует ученых еще и потому, что это – один из возможных способов роста черных дыр. К тому же, не стоит забывать о том, что слияние двух черных дыр порождает гравитационные волны. О том, как ученым удалось обнаружить гравитационные волны и что это значит для науки, читайте в статье моего коллеги Ильи Хеля.

Все дальше и дальше

Обычно сверхмассивная черная дыра составляет 0,01 % массы галактики, значит, можно предположить, что поиск «невидимки» самых крупных размеров нужно начать с поиска самой большой галактики. Таковой в обозримой Вселенной является IC 1101, протяженность которой — два миллиона световых лет, что почти в два раза превышает расстояние до соседней с нами галактики — Андромеды. По массе она может сравняться со всем созвездием Девы. Ученые предположили, что там и находится самая «тяжелая» черная дыра, однако у IC 1101 есть конкурент.

Ученые из Йельского университета, ищущие в нашем звездном небе сверхмассивные черные дыры, в самой далекой галактике нашли аномалию. Галактика CID-947 находится так далеко от нас, что астрофизики рассматривают ее в сильной ретроспективе. По привычным для нас меркам, она сейчас находится в возрасте 1,5-2 миллиардов лет после Большого взрыва (по мнению ученых, он произошел 14 миллиардов лет назад). Черная дыра в этой галактике аномально тяжелая и составляет 17 % от массы всей галактики, превышая Солнечную в 7 миллиардов раз, хотя сама CID-947 не больше по размерам, чем наш Млечный Путь. Смело можно сказать, что на данный момент это самая большая черная дыра, известная науке.

Формирование

Сверхмассивная чёрная дыра и её аккреционный диск в представлении художника.

Общепринятой теории образования чёрных дыр такой массы ещё нет. Существует несколько гипотез, наиболее очевидной из которых является гипотеза, описывающая постепенное наращивание массы чёрной дыры аккрецией вещества на чёрную дыру звёздной массы. Другая гипотеза предполагает, что сверхмассивные чёрные дыры образуются при коллапсе больших газовых облаков и при их превращении в релятивистскую звезду массой в несколько сотен тысяч солнечных масс или больше. Такая звезда быстро становится нестабильной к радиальным возмущениям в связи с процессами образования электронно-позитронных пар, происходящими в её ядре, и может сколлапсировать сразу в чёрную дыру. При этом коллапс идёт минуя стадию сверхновой, при которой взрыв разбросал бы большую часть массы, не позволив образоваться сверхмассивной чёрной дыре. Ещё одна модель предполагает, что сверхмассивные чёрные дыры могли образоваться в результате коллапса плотных звёздных кластеров, когда отрицательная теплоёмкость системы приводит дисперсию скорости в ядре к релятивистским значениям. Наконец, первичные чёрные дыры могли образоваться из начальных возмущений сразу после Большого взрыва.

Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме. Для этого у материи должен быть очень малый начальный угловой момент — то есть медленное вращение. Обычно скорость аккреции на чёрную дыру ограничена именно угловым моментом падающей материи, который должен быть в основном передан обратно наружу, что и ограничивает скорость роста массы чёрной дыры (см. аккреционный диск).

В наблюдаемом списке кандидатов в чёрные дыры есть провал в распределении масс. Есть чёрные дыры звёздных масс, образующиеся в результате коллапса звёзд, массы которых простираются, вероятно, до 33 солнечных масс. Минимальная же масса сверхмассивных чёрных дыр лежит в районе 105 солнечных масс (при максимальном значении — не более 5·1010 солнечных масс). Самая массивная из обнаруженных чёрных дыр SDSS J140821.67+025733.2 имеет массу 1.96 1011солнечных масс. Между этими значениями должны лежать чёрные дыры промежуточных масс, но такая чёрная дыра (HLX-1, обнаруженная австралийским радиотелескопом CSIRO 9 июля 2012 года) пока известна лишь в единственном экземпляре, что является аргументом в пользу различных механизмов образования лёгких и тяжёлых чёрных дыр. Некоторые астрофизические модели, однако, объясняют характерные особенности сверхъярких рентгеновских источников, как содержащих именно такие чёрные дыры (промежуточных масс).

Памятка о черных дырах

Доподлинно известно, что простая черная дыра – это некогда светившая звезда. На определенном этапе существования ее гравитационные силы стали непомерно увеличиваться, при этом радиус оставался прежним. Если раньше звезду «распирало», и она росла, то теперь силы, сосредоточенные в ее ядре, начали притягивать к себе все остальные составляющие. Ее края «заваливаются» на центр, образуя невероятной силы коллапс, который и становится черной дырой. Такие «бывшие звезды» уже не светят, а являются абсолютно внешне незаметными объектами Вселенной. Но они весьма ощутимы, так как поглощают буквально все, что попадает в их гравитационный радиус. Неизвестно, что кроется за таким горизонтом событий. Исходя из фактов, любое тело столь огромная гравитация буквально раздавит. Однако в последнее время не только фантасты, но и ученые придерживаются мысли о том, что это могут быть своеобразные космические тоннели для путешествий на большие расстояния.

Гигантомания

Даже самая большая черная дыра, по представлению современных ученых, может появиться по одному из четырех сценариев. Два из них — так называемые реалистичные — связаны с коллапсом. «Отжившая» свое звезда коллапсирует, или сжимается, в результате чего появляется нейтронная звезда. При массе в полтора наших Солнца, она имеет очень маленький диаметр — около двадцати километров, однако плотность вещества очень большая. Если же звезда обладала очень большой массой, то вместо нейтронной звезды появляется черная дыра.

Вторая из реалистичных версий предполагает, что появление рассматриваемого нами объекта может быть связано с коллапсом протогалактического газа или всей центральной части галактики.

Оставшиеся две — гипотетические — версии гласят, что, возможно, некоторые черные дыры во Вселенной существуют с момента Большого взрыва, их называют первичными. По второму предположению, они также могут быть образованы вследствие ядерных реакций высоких энергий.

Обнаружение сверхмассивных чёрных дыр

В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с гравитационным радиусом, который задаётся формулой


,

К сожалению, сегодня разрешающая способность телескопов недостаточна для того, чтобы различать области пространства размером порядка гравитационного радиуса чёрной дыры. Поэтому в идентификации сверхмассивных объектов как чёрных дыр есть определённая степень допущения. Считается, что установленный верхний предел размеров этих объектов недостаточен, чтобы рассматривать их как скопления белых или коричневых карликов, нейтронных звёзд, чёрных дыр обычной массы.

Существует множество способов определить массу и ориентировочные размеры сверхмассивного тела, однако большинство из них основано на измерении характеристик орбит вращающихся вокруг них объектов (звёзд, радиоисточников, газовых дисков). В самом простейшем и достаточно часто встречающемся случае обращение происходит по кеплеровским орбитам, о чём говорит пропорциональность скорости вращения спутника квадратному корню из большой полуоси орбиты:


.


.

Метод отношения масса-светимость

Основным методом поиска сверхмассивных чёрных дыр в настоящее время является исследование распределения яркости и скорости движения звёзд в зависимости от расстояния до центра галактики. Распределение яркости снимается фотометрическими методами при фотографировании галактик с большим разрешением, скорости звёзд — по красному смещению и уширению линий поглощения в спектре звезды.

Имея распределение скорости звёзд можно найти радиальное распределение масс в галактике. Например, при эллиптической симметрии поля скоростей решение уравнения Бернулли даёт следующий результат:


,

Поскольку чёрная дыра имеет большую массу при низкой светимости, одним из признаков наличия в центре галактики сверхмассивной чёрной дыры может служить высокое отношение массы к светимости для ядра галактики. Плотное скопление обычных звёзд имеет отношение порядка единицы (масса и светимость выражаются в массах и светимостях солнца), поэтому значения (для некоторых галактик ), являются признаком наличия сверхмассивной чёрной дыры. Возможны, однако, альтернативные объяснения этого феномена: скопления белых или коричневых карликов, нейтронных звёзд, чёрных дыр обычной массы.

Измерение скорости вращения газа

В последнее время благодаря повышению разрешающей способности телескопов стало возможным наблюдать и измерять скорости движения отдельных объектов в непосредственной близости от центра галактик. Так, при помощи спектрографа FOS (Faint Object Spectrograph) космического телескопа «Хаббл» группой под руководством Х. Форда была обнаружена вращающаяся газовая структура в центре галактики M87. Скорость вращения газа на расстоянии около 60 св. лет от центра галактики составила 550 км/с, что соответствует кеплеровской орбите с массой центрального тела порядка 3·109 масс Солнца. Несмотря на гигантскую массу центрального объекта, нельзя сказать с полной определённостью, что он является чёрной дырой, поскольку гравитационный радиус такой чёрной дыры составляет около 0,001 св. года.

Измерение скорости микроволновых источников

В 1995 г. группа под руководством Дж. Морана наблюдала точечные микроволновые источники, вращающиеся в непосредственной близости от центра галактики NGС 4258. Наблюдения проводились при помощи радиоинтерферометра, включавшего сеть наземных радиотелескопов, что позволило наблюдать центр галактики с угловым разрешением 0,001″. Всего было обнаружено 17 компактных источников, расположенных в дискообразной структуре радиусом около 10 св. лет. Источники вращались в соответствии с кеплеровским законом (скорость вращения обратно пропорциональна квадратному корню из расстояния), откуда масса центрального объекта была оценена как 4·107 масс солнца, а верхний предел радиуса ядра — 0,04 св. года.

Наблюдение траекторий отдельных звёзд

В 1993—1996 годах А. Экарт и Р. Генцель наблюдали движение отдельных звёзд в окрестностях центра нашей Галактики. Наблюдения проводились в инфракрасных лучах, для которых слой космической пыли вблизи ядра галактики не является препятствием. В результате удалось точно измерить параметры движения 39 звёзд, находящихся на расстоянии от 0,13 до 1,3 св. года от центра галактики. Было установлено, что движение звёзд соответствует кеплеровскому, центральное тело массой 2,5·106 масс солнца и радиусом не более 0,05 св. года соответствует положению компактного радиоисточника Стрелец-А (Sgr A).

Выброс материи размером с Юпитер (иногда в нашем направлении)

Выброс материи.

Теоретические расчеты и компьютерное моделирование говорят о том, что возле центральной черной дыры нашей галактики – Стрельца А* — может находиться очень массивная звезда, которая каждые 10 тысяч лет очень близко приближается к дыре, из-за чего последняя вытягивает из нее звездное вещество, образуя длинную струю из раскаленной материи. Часть этой материи пожирается самой дырой, другая – выбрасывается в космос. Однако некоторая часть этой материи остается на достаточно удаленном от дыры расстоянии и способна сливаться в клубок размером с планету. Но самое интересно заключается даже не в этом.

Эти клубы материи, в некоторых случаях размером с наш Нептун, а иногда и достигающие размера Юпитера, выбрасываются в галактическое пространство со скоростью 3,2 – 32,2 миллиона километров в час. По расчетам исследователей, в результате событий приливного разрушения звезды в космос будут выброшены около 100 миллионов подобных тел. И, возможно, некоторые из них будут направлены в нашу сторону.

Параметры квазара Млечного Пути

Используя метод радиоинтерферометрии, исследователи смогли рассчитать массу сверхмассивной черной дыры, ее радиус и гравитационную силу. Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Итак, Стрелец А* (так названо ядро) приравнивается к четырем миллионам солнечных масс. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие звездные скопления.

Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий.

Сверхмассивные чёрные дыры вне нашей галактики

  • По состоянию на 2018 год самая тяжёлая сверхмассивная чёрная дыра находится в квазаре TON 618 в созвездии Гончих Псов на расстоянии 10,37 млрд световых лет от Солнца. Её масса составляет 66 млрд M.
  • Сверхмассивная чёрная дыра в центре галактики Хольмберг 15A (en:Holmberg 15A), находящейся в созвездии Кита в 700 млн св. лет от Солнца, имеет массу равную примерно 40±8 млрд масс Солнца.
  • Сверхмассивная чёрная дыра массой 21 млрд масс Солнца находится в галактике NGC 4889 в созвездии Волосы Вероники.
  • Квазар OJ 287 в созвездии Рака представляет собой двойную систему чёрных дыр, бо́льшая из которых имеет массу равную 18 млрд M, фактически массу небольшой галактики.
  • Масса чёрной дыры в центре галактики NGC 1277 в созвездии Персея составляет 17 млрд M, что составляет 14 % массы всей галактики.
  • Сверхмассивная чёрная дыра Q0906+6930 в созвездии Большой Медведицы имеет массу в 10 млрд M.

Сверхмассивные чёрные дыры в карликовых галактиках

В 2011 году активную сверхмассивную чёрную дыру массой 3⋅106M нашли в карликовой галактике Henize 2−10 (en:Hen 2-10) в 30 млн световых лет от Солнца в созвездии Компаса. Затем было найдено около 100 активных массивных чёрных дыр в галактиках с относительно слабым звездообразованием. Дальнейший поиск с помощью более длинных радиоволн помог обнаружить 39 кандидатов в менее активные массивные чёрные дыры, из которых минимум 14 из кандидатов являются, скорее всего, массивными чёрными дырами. Некоторые из этих потенциальных массивных чёрных дыр находятся не в центрах их галактик, а на окраинах. Компьютерное моделирование показало, что до половины всех карликовых галактик могут иметь нецентральные чёрные дыры.

Карта черных дыр

Это карта гамма-лучевых источников неба, составленная «Ферми». Она похожа на звездную карту нашей галактики, разве что сильно высвечивает галактический диск. Более старые источники обеднели на гамма-лучи, поэтому это относительно новые точечные источники.

По сравнению с этой картой, карта черных дыр будет:

  • более сосредоточенной в галактическом центре;
  • чуть более размытой по ширине;
  • включать галактическую выпуклость;
  • состоять из 100 миллионов объектов, плюс-минус погрешность.

Если создать гибрид карты «Ферми» (выше) и карту галактики COBE (ниже), можно получить количественную картину расположения черных дыр в галактике.

Галактика, видимая в инфракрасном от COBE

Хотя эта карта показывает звезды, черные дыры будут следовать похожему распределению, хоть и более сжатому в галактической плоскости и более централизованному к выпуклости Черные дыры реальные, распространены и подавляющее большинство из них крайне трудно обнаружить сегодня. Вселенная существует очень давно, и хотя мы видим огромное число звезд, большинство из самых массивных звезд — 95% и больше — уже давно погибли. Чем они стали? Около четверти из них стали черными дырами, миллионы еще скрываются.

Эллиптические галактики закручивают черные дыры в эллиптический рой, скапливающийся вокруг галактического центра, примерно как и звезды, что мы видим. Многие черные дыры со временем мигрируют в гравитационный колодец в центре галактики — поэтому сверхмассивные черные дыры и становятся сверхмассивными. Но мы пока не видим этой картины целиком. И не увидим, пока не научимся качественно визуализировать черные дыры.

В отсутствие прямой визуализации, наука дает нам только это и рассказывает кое-что примечательное: на каждую тысячу звезд, что мы видим сегодня, есть примерно одна черная дыра. Неплохая статистика для совершенно невидимых объектов, согласитесь.

Прятки в крошечных галактиках

Снимки, подтверждающие обнаружение чего-то необычного.

В галактике Fornax UCD3 в созвездии Печь находится всего 100 миллионов звезд. Это настоящая кроха по сравнению с тем же Млечным Путем, в котором предположительно могут находиться сотни миллиардов светил. Радиус галактики Fornax UCD3 составляет всего каких-то 300 световых лет. Несмотря на свои крошечные размеры, «ультракомпактная карликовая» UCD3 является одной из самых плотных галактик во Вселенной.

В ее центре находится сверхмассивная черная дыра с 3-5 миллионами солнечных масс. Она почти такая же тяжелая, как черная дыра Стрелец А* в центре нашего Млечного Пути, диаметр которого составляет около 150 000 световых лет.

Обнаружение черной дыры UCD3 оказалось лишь четвертым случаем обнаружения сверхмассивных черных дыр внутри ультракомпактных галактик. Астрономы подсчитали, что на долю дыры приходится 4 процента от общей массы галактики. Как правило в любых других случаях эта доля составляет всего 0,3 процента.

Ученые подозревают, что раньше галактика UCD3 была еще больше, однако близкое расположение с более крупной галактикой лишило Fornax UCD3 большого числа ее звезд, превратив в карлика.

Факты и подробности

Что будет, если попасть в черную дыру? Этот вопрос — один из самых интересных. Ученые предполагают, что по мере приближения к ней тело человека начнет растягиваться. Это будет продолжаться до тех пор, пока он не превратится в поток частиц и не пересечет горизонт событий. Однако такой эффект будет наблюдаться, если черная дыра имеет звездную массу. Для сверхмассивных сценарий несколько другой, ввиду того что из-за их размера сингулярность находится достаточно далеко от горизонта.

Таким образом, путешественник сможет пересечь горизонт событий — край черной дыры, и довольно глубоко погрузиться в нее, прежде чем почувствует разрушительные эффекты. Скорость его движения будет постоянно ускоряться, пока не достигнет скорости света, а время — замедляться. Но и это еще не все!

Экзотические экзопланеты

Еще один черный Юпитер TrES-2b, температура на котором может достигать 980 градусов по Цельсию был обнаружен в 2011 году с помощью космического телескопа NASA Kepler. Вращающийся всего в 4 миллионов километров от своей звезды газовый гигант размером почти не отражает солнечных лучей. Если бы могли рассмотреть TrES-2b вблизи, то он выглядел бы почти как черный газовый шар с легким красным оттенком – настоящая экзотика среди экзопланет.

Напомню, что космический аппарат Kepler, вращающийся вокруг Земли, специально был разработан для поиска планет за пределами нашей Солнечной системы. Однако на таких расстояниях – а TrES-2b находится в 750 световых годах от Земли – это не так просто, как фотографировать Луну или Марс. Используя световые датчики, называемые фотометрами, которые непрерывно отслеживают свет десятков тысяч звезд, Kepler ищет регулярное затемнение звезд. Такие провалы в яркости могут указывать на то, что перед звездой, относительно Земли, блокируя часть света звезды, проходит планета.

Черные планеты или горячие Юпитеры – интересное явление на просторах наблюдаемой Вселенной

Как National Geographic, когда планета проходит перед своей звездой, ее затененная сторона обращена к Kepler. Но когда планета начинает вращаться в сторону и «позади» своей звезды, ее обращенная к солнцу сторона оказывается лицом к зрителю. Количество звездного света растет до тех пор, пока планета, став невидимой для космического телескопа, полностью не пройдет позади своей звезды.

Современные компьютерные модели предсказывают, что горячие газовые гиганты, которые вращаются очень близко к своим звездам, могут быть только такими же темными, как Меркурий, который отражает около 10 процентов солнечного света, попадающего на него. Но TrES-2b настолько темный, что отражает только один процент звездного света, который достигает его поверхности. Это означает, что текущие модели, возможно, необходимо пересмотреть. Но что делает эти экзопланеты черными?

На самом деле большинтсво планет в известной Вселенной – это газовые гиганты и горячие Юпитеры

Ответ на этот вопрос, вероятно, лежит в несколько ином подходе – а именно инфракрасном телескопе Spitzer, который смог измерить излучение исходящее от HD 149026b. Примечательно, что горячий Юпитер HD 149026b считается приливно-отливной планетой, так что одна ее сторона постоянно находится под воздействием лучей своей звезды. Астрономы полагают, что эта черная планета вероятно, очень горячая на освещенной солнцем стороне и гораздо холоднее на темной.

Физические характеристики

Гравитационный радиус сверхмассивной ЧД (собственно, как и любого другого тела) — считается по формуле:

rg=2Gm/c2      (м)

G (гравитационная постоянная) = 6,67408(31)·10−11

с — скорость света в вакууме = 299 792 458 м/с

m — масса тела (кг), для которого считается радиус

В астрофизике чаще используют такую формулу :

rg ≈ 2,95 (m/Мʘ)      (км)

m — масса тела (кг), для которого считается радиус

Мʘ — масса Солнца

Для любых невращающихся черных дыр гравитационный радиус больше их фактического радиуса и является также и горизонтом событий.

Из этой формулы выходит, что СМЧД массой 20 млрд. солнечных масс (такая как, например, в галактике NGC 4889) будет иметь горизонт событий приблизительно 6 млрд. километров — это приблизительный радиус орбиты Плутона. При таком объеме средняя плотность будет крайне малой, даже меньше плотности воздуха.

Не стоит, однако путать эту плотность с плотностью СМЧД, она намного выше, если такое понятие как плотность вообще существует при таких массах.

Также неизвестно из чего состоит сама ЧД, как себя ведет и во что превращается в итоге вещество при экстремально высоких давлениях — не изучено, экспериментально достичь таких давлений на Земле, скорее всего, — невозможно.

Кинематограф и сверхмассивная черная дыра

Гаргантюа – этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». Просматривая эту картину, сложно понять, почему выбрано именно это название и где связь. Но в первоначальном сценарии планировали создать три черных дыры, две из которых носили бы названия Гаргантюа и Пантагрюэль, взятые из сатирического романа Франсуа Рабле. После внесенных изменений осталась лишь одна «кроличья нора», для обозначения которой было выбрано первое наименование. Стоит заметить, что в фильме черная дыра изображена максимально реалистично. Так сказать, дизайном ее внешнего вида занимался ученый Кип Торн, который базировался на изученных свойствах данных космических тел.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector