Белая дыра

Где самая близкая к Земле черная дыра

Исследователи полагают, что наиболее близко расположена к нам сверхтяжелая масса в центре галактики Млечный Путь. Как альтернатива — в созвездии Моноцеро: Единорог, это в 3 000 световых лет от нас.

Источник энергии

Черные дыры обладают невероятным потенциалом внутренней энергии, которой так не хватает на нашей планете. Если бы земляне научились преодолевать пространство и физические проблемы, то вполне смогли использовать эту энергию для нужд планеты.

Как это сделать, тот еще вопрос. Как вариант предлагали изготовить и запустить устройство, способное зависать на границе «горизонта событий» и после забора энергии возвращаться обратно.

По типу колодец и ведро на веревке. Только какая это «веревка» нужна крепкая? Пока это не более чем фантазии.

В 2014 году Хокинг и исследователи, используя излучение, почти-почти смогли в лабораторных условиях создать микроскопическую черную материю.

Первая черная дыра была обнаружена с помощью рентгеновского излучения.

Что такое информационный парадокс?

Парадокс потери информации обусловлен излучением Хокинга. Это излучение сугубо термическое, то есть случайно и из определенных свойств имеет только температуру. Излучение само по себе не содержит никакой информации о том, как сформировалась черная дыра. Но когда черная дыра испускает излучение, она теряет массу и сокращается. Все это совершенно не зависит от вещества, которое стало частью черной дыры или из которого она образовалась. Выходит, зная только конечное состояние испарения нельзя сказать, из чего сформировалась черная дыра. Этот процесс «необратим» — и загвоздка в том, что в квантовой механике нет такого процесса.

Выходит, испарение черной дыры несовместимо с квантовой теории, известной нам, и с этим нужно что-то делать. Каким-то образом устранить несогласованность. Большинство физиков считают, что решение состоит в том, что излучение Хокинга должно каким-то образом содержать информацию.

Передачи

  • Academia
  • Big Opera – 2019
  • XX век
  • Абсолютный слух
  • Агора
  • Балетная энциклопедия
  • Белая студия
  • Библейский сюжет
  • Билет в Большой
  • Ближний круг
  • Большая опера – 2017 (пятый сезон)
  • Большая опера – 2019 (шестой сезон)
  • Большая опера (все сезоны)
  • Больше, чем любовь
  • Большие и маленькие
  • Большие Маленьким
  • Большой балет
  • БОЛЬШОЙ БАЛЕТ- 2018
  • Большой джаз
  • Власть факта
  • Война и мир. Читаем роман
  • Гении и злодеи
  • Гений
  • Главная роль
  • Документальная камера
  • Ехал Грека…
  • Жизнь замечательных идей
  • Завтра не умрет никогда
  • «Игра в бисер» с Игорем Волгиным
  • Искатели
  • Искусственный отбор
  • Картина мира с Михаилом Ковальчуком
  • Квартет 4×4. 1 сезон
  • Квартет 4×4. 2 сезон
  • Кинескоп с Петром Шепотинником
  • Кинопоэзия
  • Клуб «Шаболовка, 37»
  • Коллекция
  • Коллекция интервью
  • Кто мы?
  • Кто там…
  • Культ кино
  • Легенды балета XX века
  • Легенды мирового кино
  • Линия жизни
  • Любовь в искусстве
  • Магистр игры
  • Моя любовь – Россия!
  • МЫ – ГРАМОТЕИ!
  • Наблюдатель
  • Нано-Опера
  • Научный стенд-ап
  • Нефронтовые заметки
  • Новости культуры
  • Новости культуры с Владиславом Флярковским
  • Новости. Подробно
  • ОНЛАЙН-ТРАНСЛЯЦИИ НА САЙТЕ TVKULTURA.RU
  • Оркестр будущего
  • «Особый взгляд» с Сэмом Клебановым
  • Острова
  • Открытая книга
  • Открытый музей
  • Пешком…
  • Письма из провинции
  • Полиглот (все программы)
  • Послушайте!
  • Правила жизни
  • Пряничный домик
  • Пятое измерение
  • Романс – XXI век
  • Романтика романса
  • Рэгтайм, или Разорванное время
  • САС. Те, с которыми я…
  • Сати. Нескучная классика…
  • Синяя птица. Сезон 2017
  • Сита и Рама
  • Телескоп
  • «Тем временем. Смыслы» с Александром Архангельским
  • Царская ложа
  • Черные дыры. Белые пятна
  • Что делать?
  • Шедевры мирового музыкального театра
  • Шедевры старого кино
  • Щелкунчик. International Television Contest for Young Musicians ‘The Nutcracker’
  • Щелкунчик. XIX Международный телевизионный конкурс юных музыкантов
  • «Щелкунчик». XX Международный телевизионный конкурс юных музыкантов
  • «Щелкунчик». XXI Международный телевизионный конкурс юных музыкантов
  • Щелкунчик. Международный телевизионный конкурс юных музыкантов
  • Энигма
  • Эрмитаж
  • 2 ВЕРНИК 2
  • 21th International Television Contest for Young Musicians «The Nutcracker»

Тороидальные планеты

Странная планетка, да?

Некоторые ученые действительно считают, что в космосе могут существовать планеты в виде пончика или бублика, хотя таких объектов никогда и не видели. Подобные планеты называют тороидальными, поскольку «тороид» — это математическое описание формы того самого пончика. Конечно же все планеты, которые нам до этого встречались, обладали сферической формой, поскольку силы гравитации тянут материю, из которой они образованы, внутрь к их ядру. Но теоретически планеты могут приобрести и форму тороида, если такой же объем силы будет направлен из их центров в противовес гравитации.

Что интересно, законы физики не запрещают появление тороидальных планет. Просто вероятность их возникновения чрезвычайно мала, и такая планета, скорее всего, окажется нестабильной на геологических масштабах времени из-за внешних возмущений. В общем, жить на таких планетах будет как минимум очень некомфортно.

Во-первых, подобная планета, по мнению ученых, будет вращаться очень быстро – сутки на ней будут длиться всего несколько часов. Во-вторых, силы гравитации будет существенно слабее в экваториальной области и очень сильными в полярных областях. Климат тоже преподнесет свои сюрпризы: мощные ветра и разрушительные ураганы здесь будут частыми явлениями. В то же время температура на поверхности таких планет будет сильно отличаться от тех или иных областей.

]]>]]>

В определенных условиях червоточина может соединять две точки во времени вместо двух точек в пространстве. Таким образом, объект, проглоченный черной дырой, может пройти через червоточину и извергаться белой дырой в другой области времени .

Тем не менее, концепция имеет многочисленные недостатки. Например, объект, падающий в черную дыру, не сможет выдержать своего огромного гравитационного притяжения. А поскольку червоточина невероятно нестабильна, она мгновенно обрушится на себя.

Тем не менее, некоторые физики показали, что червоточина (если она существует) может позволить путешествовать как в пространстве, так и во времени. Профессор Кип Торн из Калифорнийского технологического института, который также является лауреатом Нобелевской премии, предположил, что эти три явления (черные дыры, червоточины и белые дыры) могут позволить людям путешествовать во времени и назад (тысячи лет).

Честно говоря, существуют сотни теорий, касающихся белых дыр, но ученые не нашли убедительных доказательств, подтверждающих их существование. Может быть, в нашей огромной таинственной вселенной есть место даже для них.

Клонирование

Информационный парадокс черных дыр ставит в тупик ученых не один десяток лет. Эта загадка породила бесчисленное количество споров на тему того, что же на самом деле произойдет, как только вы попадете в черную дыру. Чтобы было проще понять этот парадокс, разберем пример с гипотетической Люси. Летите вы себе такой с Люси в черную дыру, и в последнюю секунду она решает туда не попадать и сейчас наблюдает за тем, как вас туда засасывает. Люси видит, что с приближением к черной дыре ваше тело начинает медленно растягиваться и в конце концов расщепляется на атомы. Люси думает, что вы погибли и благодарна судьбе, что не послушала вас и не отправилась вслед.

Однако погодите. Ведь история заканчивается совсем не так. Вы на самом деле остаетесь живы и продолжаете углубляться в бесконечность черной дыры. Что произойдет с вам дальше — не суть нашего вопроса. Самое интересное заключается в том, что вы остались живы, хотя Люси видела, как вы погибли.

Это и есть информационный парадокс черной дыры. Это никакая не иллюзия, и Люси не потеряла рассудок. Это то, что есть на самом деле. Законы физики говорят нам, что вы можете быть одновременно мертвым за пределами черной дыры и живым, находясь в ней. Некоторые ученые теоретизируют на тему того, что это совсем никакой не парадокс, так как вы просто не можете наблюдать за двумя реальностями одновременно. Другие указывают на клонирование (на возможность существования другого вас в другой реальности) как на возможный вариант решения этого парадокса, даже несмотря на то, что это бросает вызов законам квантовой механики, касающимся процесса сохранения информации.

Определенного ответа для решения этого парадокса нет (пока). Возможно, через тысячи лет человечество сможет разобраться в том, что же на самом деле происходит. Однако уже точно известно, что Люси с собой в путешествия брать больше не стоит.

Луны со своими собственными лунами

Луна у луны… К-к-к-к-комбо!

Ученые считают, что у спутников планет могут иметься свои собственные луны, которые вращаются вокруг них так же, как это делают планетарные спутники. По крайней мере в теории такие объекты могут существовать. Это возможно, но требует крайне специфических условий. Если в нашей Солнечной системе такие объекты действительно существуют, то, скорее всего, находится на дальних ее границах. Где-то за пределами орбиты Нептуна, где, опять же согласно предположениям, может пролегать орбита «Девятой планеты» (о которой мы поговорим ниже).

Теперь об особых и крайне специфических условиях, при которых такие объекты могут существовать. Во-первых, необходимо присутствие большого и массивного объекта, например, планеты, которая своим гравитационным воздействием будет не притягивать, а подталкивать спутник к его к спутнику, но при этом не очень сильно, поскольку в таком случае он просто упадет на его поверхность. Во-вторых, спутник спутника должен быть достаточно маленьким, чтобы луна смогла его захватить.

Объект такого рода не обязательно будет изолирован. Другими словами, на него будет оказываться постоянное воздействие гравитационных сил своей «родительской» луны, планеты, вокруг которой эта родительская луна вращается, а также Солнца, вокруг которого вращается сама планета. Это будет создавать крайне нестабильную гравитационную обстановку для спутника луны. Именно поэтому ранее каждый отправленный к Луне искусственный спутник через пару лет сходил с ее орбиты и падал на ее поверхность.

В общем, если подобные объекты действительно существуют, то находиться они должны далеко за орбитой Нептуна, где воздействие гравитационных сил Солнца значительно ниже.

Существуют ли белые дыры?

Белая дыра — это просто теоретическая математическая концепция, и она не наблюдалась во вселенной. Большинство дискуссий о белых дырах вращаются вокруг слов «гипотетический», «неосуществимый» и «нереальный».

Они являются потенциальным решением законов общей теории относительности, которые подразумевают, что если существуют вечные черные дыры , то белые дыры также должны существовать во вселенной.

Ожидается, что они будут иметь такие свойства, как масса, заряд, момент импульса, но все, что приближается к белой дыре (даже со скоростью света), никогда не достигнет ее. Теоретически, в нашей вселенной недостаточно энергии, которая могла бы втянуть вас внутрь.

Белые дыры

Черные дыры это еще нормально, но белые…

Черные дыры – это очень массивные объекты, притягивающие и пожирающие любые объекты, которым не посчастливилось оказаться рядом с ними. Все, включая свет, засасывается внутрь черной дыры и не может вырваться наружу. Белые дыры в теории работают в противоположную сторону. То есть они не засасывают, а отталкивают от себя объекты, не позволяя им попадать внутрь.

Большинство физиков убеждены, что белых дыр в природе в принципе быть не может. Однако с этим не согласна общая теория относительности Эйнштейна, где эти объекты были предсказаны. Некоторые ученые все же считают, что белые дыры действительно могут существовать. В этом случае все что к ним приближается, уничтожается очень мощным объемом энергии, которую эти объекты излучают. Если же объекту удается каким-то образом выжить, то с приближением к белой дыре время для него будет замедляться до бесконечности.

Таких объектов мы еще не обнаружили. На самом деле мы даже еще не видели черных дыр, но знаем об их существовании по косвенному воздействию на окружающее пространство и другие объекты. И все же некоторые ученые считают, что белые дыры могут представлять собой обратную сторону черных. А согласно одной из теорий квантовой гравитации, черные дыры со временем превращаются в белые.

Как выглядят черные дыры

Черные дыры имеют три «слоя»: внешний и внутренний горизонт событий, а также сингулярность.

Горизонт Событий черной дыры — это граница вокруг устья черной дыры, за которую не может проникнуть свет. Как только частица пересекает горизонт событий, она не может вырваться обратно. Гравитация постоянна по всему горизонту событий.

Внутренняя область черной дыры, где находится масса объекта, известна как его сингулярность, — это точка в пространстве и времени, где сосредоточена масса черной дыры.

Ученые не могут видеть черные дыры так, как они могут видеть звезды и другие объекты в космосе. Вместо этого астрономы должны полагаться на обнаружение излучения, которое испускают черные дыры, когда пыль и газ втягиваются внутрь. Но сверхмассивные черные дыры, лежащие в центре галактики, могут быть окутаны густой пылью и газом вокруг них, что может блокировать излучение.

Иногда, когда материя притягивается к черной дыре, она рикошетит от горизонта событий и выбрасывается наружу, вместо того чтобы быть втянутой внутрь. Создаются яркие струи, движущиеся с почти релятивистскими скоростями. Хотя черная дыра остается невидимой, эти мощные струи можно наблюдать с больших расстояний.

Изображение черной дыры на телескопе Event Horizon в M87 (выпущенном в 2019 году) было экстраординарным усилием, потребовавшим двух лет исследований даже после того, как снимки были сделаны. Это происходит потому, что совместная работа телескопов, которая охватывает многие обсерватории по всему миру, производит поразительное количество данных, которые слишком велики для передачи через интернет.

Со временем исследователи ожидают получить изображение других черных дыр и построить хранилище того, как выглядят эти объекты. Следующая цель, вероятно, Стрелец А*, который является черной дырой в центре нашей собственной галактики Млечный Путь. Стрелец A* интригует, потому что он тише, чем ожидалось, что может быть связано с магнитными полями, подавляющими его активность. Другое исследование показало, что Стрельца А* окружает холодное газовое гало, что дает беспрецедентное понимание того, как выглядит окружающая среда вокруг черной дыры.

Возможно ли существование “белых дыр” во вселенной?

Следует отметить, что все представления о черных и белых дырах и о множественности вселенных, с которыми мы не можем поддерживать контактов иначе, как только с помощью дыр в пространстве-времени, основываются на нашем глубоком ощущении необходимости существования пространственно-временных симметрии.

В действительности черные и белые дыры не единственно возможные экзотические объекты, предсказываемые теорией. Обсуждалась также возможность существования так называемых «серых дыр», вещество которых, выплескиваясь, как в белых дырах, за горизонт событий, почти тотчас же начинает быстро сжиматься в процессе гравитационного коллапса. Могут ли белые (или серые) дыры существовать реально?

По мнению большинства специалистов, представления о пространственно-временных мостах во вращающихся и заряженных черных дырах слишком идеализированы и что такие мосты вряд ли в природе есть. Наиболее вероятно, что в черных дырах сингулярность, поглощающая вещество, пространственноподобна, и тогда нет оснований говорить о белых дырах, порождаемых коллапсом звезд в других вселенных (или в других областях одного и того же пространства-времени).

Что же касается так называемых «задержавшихся ядер», то и для них условия образования весьма неблагоприятны.

Итак, если черные дыры есть и это факт – возможно ли существование в космосе белых дыр, хотя бы теоретически? На самом деле точного ответа на этот вопрос нет, хотя есть ряд интересных теорий, проработанных достаточно хорошо в 1970-х г.г. К примеру, американец Д. М. Эрдли в 1974 г. пришел к следующим выводам:

  1. Если вблизи черной дыры излучение испытывает сильное красное смещение, то в окрестностях белой дыры оно должно претерпевать интенсивное фиолетовое смещение.
  2. На ранней стадии развития Вселенной, когда вещество и излучение были сжаты до сверхвысоких плотностей в малом объеме, вокруг потенциальной белой дыры должны были концентрироваться мощные сгустки высокоэнергетического излучения с сильным фиолетовым смещением.
  3. Если это так, то подобная невероятная энергия заключенная в невероятно же малых объемах, неминуемо привела бы к тому, что вокруг зарождающейся белой дыры сразу же сформировалась бы черная дыра, которая навсегда скрыла “белую” под своим горизонтом событий.

Впрочем, шанс на образование белой дыры все-таки есть.

Как показал К. Лэйк из университета г. Торонто, если процесс образования белой дыры чуть-чуть задержится и начнется не во время Большого взрыва (как считал Эрдли), а сразу после него, то шанс не создать черную дыру и не быть тут же ей поглощенной, все-таки есть. Правда и тут есть оговорки.

Лэйк рассмотрел три возможности:

  • Некоторые белые дыры, вновь коллапсируя, превращаются в черные дыры
  • Часть белых дыр расширяется далеко за пределы сферы Шварцшильда, и сегодня мы не можем уже считать их белыми дырами
  • Некоторые локальные неоднородности, возникшие в процессе Большого взрыва, не перешли границу шварцшильдовского радиуса и все время оставались наблюдаемыми космическими объектами.

Вот этот третий частный случай нам и интересен. Правда, согласно расчетам Лэйка, для дыр третьего типа такое излучение должно испытывать сильнейшее красное смещение, вследствие чего эти источники должны иметь вид тусклых красноватых точек, а не эффектных катастрофических взрывов.

То есть, если белые дыры и существуют, то они неотличимы от черных дыр, а некоторые другие ученые, в том числе и Пенроуз, считают, что белые дыры вообще невозможны, так как они нарушают “принцип космической цензуры”: ведь их сингулярность, по крайней мере в принципе, можно наблюдать!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector