Электромагнитная снайперская винтовка

Можно ли защититься?

После первых испытаний ядерного оружия и определения электромагнитного излучения, как одного из его основных поражающих факторов, в СССР и США начали работать над защитой от ЭМИ.

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

Идея-фикс

Однако мысль о сверхдальнобойной пушке упала в плодородную почву. Уже в 1918 году французы построили так называемую «ответную пушку» такого же калибра — 210 мм с длиной ствола 110 калибров. Ее снаряд массой 108 кг при начальной скорости 1 450 м/с должен был лететь на 115 км. Установку смонтировали на 24-осном железнодорожном транспортере с возможностью стрельбы прямо с колеи. Это было время расцвета железнодорожной артиллерии, единственной способной оперативно маневрировать орудиями большой и особой мощности (тогдашний автотранспорт и дороги, по которым он передвигался, и близко не могли конкурировать с железнодорожным сообщением)… Французы, правда, не учли того, что «ответную пушку» не выдержит ни один мост.

Тем временем итальянская фирма «Ансальдо» в конце 1918 года сконструировала 200-мм пушку с начальной скоростью снаряда около 1 500 м/с и дальностью стрельбы 140 км. Англичане, в свою очередь, надеялись поражать со своего острова цели на континенте. Для этого они разработали 203-мм пушку с начальной скоростью 109-кг снаряда в 1 500 м/с и дальностью до 110—120 км, но реализовывать проект не стали.

Уже в начале 1920-х годов французские и германские специалисты обосновывали необходимость иметь орудие калибра около 200 мм с дальностью стрельбы до 200 км. Стрелять такая пушка должна была по стратегически важным и желательно (из-за рассеивания попаданий) площадным целям. Это могли быть районы сосредоточения противника, административные и промышленные центры, порты, железнодорожные узлы. Противники суперпушек резонно замечали, что те же задачи вполне могла решить бомбардировочная авиация. На что сторонники сверхдальнобойной артиллерии отвечали, что пушки, в отличие от авиации, могут поражать цели круглосуточно и в любую погоду. К тому же с появлением военной авиации родились и системы ПВО, а сверхдальнобойной пушке ни истребители, ни зенитки помешать не могли. Появление дальних высотных самолетов-разведчиков и развитие методов баллистических расчетов давало надежду на повышение меткости сверхдальней стрельбы, за счет более точной информации о координатах цели и возможности корректировки стрельбы. Поскольку количество и скорострельность таких орудий были невелики, о «массированном» обстреле речи не шло. Самым важным в данном случае считался психологический фактор, возможность держать противника в напряжении угрозой внезапных обстрелов.

Способы увеличения дальности стрельбы хорошо известны — повышение начальной скорости снаряда, подбор угла возвышения, улучшение аэродинамической формы снаряда. Для повышения скорости увеличивают метательный пороховой заряд: при сверхдальней стрельбе он должен был в 1,5—2 раза превосходить снаряд по массе. Чтобы пороховые газы смогли произвести большую работу, удлиняют ствол. А для повышения среднего давления в канале ствола, определяющего скорость снаряда, применяли прогрессивно горящие пороха (в них по мере выгорания зерна увеличивается поверхность, охваченная пламенем, отчего возрастает скорость образования пороховых газов). Изменение формы снаряда — удлинение головной части, сужение хвостовой — имело целью улучшить его обтекаемость потоком воздуха. Но при этом уменьшались полезный объем и мощь снаряда. Кроме того, потери скорости из-за сопротивления воздуха можно сократить увеличением поперечной нагрузки, то есть отношения массы снаряда к площади его наибольшего поперечного сечения. Другими словами, снаряд в этом случае необходимо удлинить. При этом нужно было гарантировать его устойчивость в полете, обеспечив высокую скорость вращения. Были и другие специфические проблемы. В частности, в дальнобойных орудиях обычные медные ведущие пояски снарядов часто не выдерживали очень высокого давления и не могли правильно «вести» снаряд по нарезам ствола. Вспомнили полигональные (в форме закрученной винтом продолговатой призмы) снаряды, с которыми экспериментировал Витворт в 1860-е годы. После Первой мировой войны видный французский артиллерист Шарбонье трансформировал эту идею в снаряды с готовыми выступами («нарезные»), форма которых повторяла нарезы канала ствола. Опыты с полигональными и «нарезными» снарядами начали в ряде стран. Снаряд удавалось удлинить до 6—10 калибров, а поскольку затраты энергии на форсирование и трение были меньше, чем при ведущих поясках, удавалось получать большие дальности даже при более тяжелых снарядах. Во второй половине 1930-х считалось вполне вероятным, «что в ближайшем будущем появятся орудия калибром 500—600 мм, стреляющие на дистанцию в 120—150 км». При этом просто «дальнобойными» считали буксируемые орудия с дальностью стрельбы до 30 км и железнодорожные — с дальностью до 60 км.

Теория

В физике рельсотрона модуль вектора силы может быть вычислен через закон Био — Савара — Лапласа и формулу силы Лоренца. Для вычисления потребуются:

  • μ{\displaystyle \mu _{0}} — магнитная постоянная,
  • d{\displaystyle d} — диаметр рельсов (подразумевается круглое сечение),
  • r{\displaystyle r} — расстояние между осями рельсов,
  • I{\displaystyle I} — сила протекающего в системе тока.

Из закона Био — Савара — Лапласа следует, что магнитное поле на определённой дистанции (s{\displaystyle s}) от бесконечного провода с током вычисляется как:

B(s)=μI2πs{\displaystyle \mathbf {B} (s)={\frac {\mu _{0}I}{2\pi s}}}

Следовательно, в пространстве между двумя бесконечными проводами, расположенными на расстоянии r{\displaystyle r} друг от друга, модуль магнитного поля может быть выражен формулой:

B(s)=μI2π(1s+1r−s){\displaystyle B(s)={\frac {\mu _{0}I}{2\pi }}\left({\frac {1}{s}}+{\frac {1}{r-s}}\right)}

Для того, чтобы уточнить среднее значение для магнитного поля на арматуре рельсотрона, предположим, что диаметр рельса d{\displaystyle d} намного меньше расстояния r{\displaystyle r} и, считая, что рельсы могут считаться парой полубесконечных проводников, мы можем вычислить следующий интеграл:[источник не указан 163 дня]

Bavg=1r∫dr−dB(s)ds=μI2πr∫dr−d(1s+1r−s)ds=μIπrln⁡r−dd≈μIπrln⁡rd{\displaystyle B_{\text{avg}}={\frac {1}{r}}\int _{d}^{r-d}B(s){\text{d}}s={\frac {\mu _{0}I}{2\pi r}}\int _{d}^{r-d}\left({\frac {1}{s}}+{\frac {1}{r-s}}\right){\text{d}}s={\frac {\mu _{0}I}{\pi r}}\ln {\frac {r-d}{d}}\approx {\frac {\mu _{0}I}{\pi r}}\ln {\frac {r}{d}}}

По закону Лоренца, магнитная сила на проводе с током равна IdB{\displaystyle IdB}; предполагая ширину снаряда-проводника r{\displaystyle r}, мы получим:

F=IrBavg=μI2πln⁡rd{\displaystyle F=IrB_{\text{avg}}={\frac {\mu _{0}I^{2}}{\pi }}\ln {\frac {r}{d}}}

Формула основывается на допущении, что расстояние l{\displaystyle l} между точкой, в которой измеряется сила F{\displaystyle F}, и началом рельсов больше, чем расстояние между рельсами (r{\displaystyle r}) в 3-4 раза (l>3r{\displaystyle l>3r}). Также были сделаны некоторые другие допущения; чтобы описать силу более точно, требуется учитывать геометрию рельсов и снаряда.

Конструируем СВЧ пушку

Сегодня и мы расскажем, каким образом конструируется СВЧ пушка из микроволновки, описанная Kreosan на ютуб. Итак, нам понадобится:

  • Микроволновая печь (рабочая).
  • Банка из-под кофе или консервная, ещё лучше корпус от громкоговорителя (колокол).
  • Проволока.
  • Необходимая мелочёвка.

Главный элемент, находящийся в микроволновке — магнетрон. Его предназначение, генерировать волны сверхвысокой частоты и огромной мощности. Мы должны извлечь нужный прибор. Для незнающих он имеет забавный вид. Сверху из железной штуки, являющейся радиатором большой мощности, торчит штырь. Он является СВЧ-излучателем. Мощность излучения около 700–800 Вт.

Конструируем СВЧ пушку

Сегодня и мы расскажем, каким образом конструируется СВЧ пушка из микроволновки, описанная Kreosan на ютуб. Итак, нам понадобится:

  • Микроволновая печь (рабочая).
  • Банка из-под кофе или консервная, ещё лучше корпус от громкоговорителя (колокол).
  • Проволока.
  • Необходимая мелочёвка.

Схема магнетрона

Главный элемент, находящийся в микроволновке — магнетрон. Его предназначение, генерировать волны сверхвысокой частоты и огромной мощности. Мы должны извлечь нужный прибор. Для незнающих он имеет забавный вид. Сверху из железной штуки, являющейся радиатором большой мощности, торчит штырь. Он является СВЧ-излучателем. Мощность излучения около 700–800 Вт.

Схема магнетронной пушки

Прототипы

В настоящее время не существует ни одного удачного примера создания высокоэффективного электромагнитного оружия. Однако это не мешает разработке прототипов. Наиболее удачным примером выступает изобретение инженерного бюро Delta V Engineering.

Пятнадцатизарядное устройство разработчиков позволяет вести достаточно скорострельную стрельбу, выпуская по 7 патронов в секунду. К сожалению, пробивной способности винтовки хватает лишь для поражения стекла и жестяных банок. Электромагнитное оружие обладает весом порядка 4 кг и стреляет пулями калибра 6,5 мм.

На сегодняшний день разработчику пока не удалось достичь успехов на пути преодоления основного недостатка винтовки — крайне низкой стартовой скорости снарядов. Здесь данный показатель составляет всего лишь 43 м/сек. Если проводить параллели, то начальная скорость патрона, выпущенного из пневматической винтовки, почти в 20 раз выше.

СВЧ-пушка

Удивительно, какая мощь скрывается внутри привычной нам бытовой техники, к помощи которой мы прибегаем ежедневно. Думаете, вас ничем нельзя удивить? Ошибаетесь! Например, такая знакомая, незаменимая помощница, как микроволновая печь, при небольшой доработке превращается в очень грозное оружие. Итак, сегодня мы будем делать пушку из обычной микроволновки!

Что нам понадобится:

  • Рабочая микроволновка
  • Консервная банка, например из под кофе
  • Проволока
  • Всякие мелочи

Основным элементом микроволновой печи является магнетрон — генератор волн сверхвысокой частоты большой мощности. Магнетрон из печки, понятно, можно извлечь. Выглядит он как забавная штуковина с мощным радиатором:

Торчащий сверху штырь — собственно СВЧ-излучатель, от которого и «прёт» излучение. Типичная мощность — около 700-800 ватт, что, надо сказать, очень и очень много и легко вскипятит незрелые мозги (а точнее, глаза) попавшего в фокус такого излучателя. К счастью, от штыря магнетрона излучение всенаправленное и потому относительно безопасно, если не подходить слишком близко. Именно поэтому для направленного воздействия магнетрону нужно оформление — антенна. Для её изготовления отлично подойдёт банка из-под кофе, в которой необходимо сделать отверстие около дна по следующей схеме:

Теперь «вынесем» магнетрон из корпуса микроволновки (для этого просто удлиним провода, которые были к нему подсоединены) и закрепим нашу антенну с помощью проволоки к корпусу магнетрона:

Всё, СВЧ-пушка готова! Как же она воздействует на бытовую технику? Даже в десятке метров от магнетрона происходит следующее: мобильный телефон перестаёт ловить сеть и просто зависает; телевизор, компьютер, радиоприёмник начинают «рычать», звук искажается до неузнаваемости; длительное воздействие магнетрона на технику приводит к взрыву; на достаточно большом расстоянии под воздействием магнетрона зажигаются лампы дневного света, прямо в руках…

http://vk.com/video_ext.php

Пытливые умы должны помнить, что влияние излучения СВЧ волн на человеческий организм изучено слабо. Работающий магнетрон оказывает термическое воздействие, может привести к формированию внутри кровеносных сосудов сгустков крови, препятствующих свободному потоку крови по кровеносной системе, свёртыванию белка глаза, возможно даже вызвать онкологические и хронические заболевания. Помимо этого существует высокий риск несчастных случаев во время подготовительных работ. Поэтому будьте осторожны, используйте средства индивидуальной защиты и не полагайтесь «на авось».

И, напоследок, про возможности использования СВЧ-пушки в быту:

  • Уничтожаем вредителей — СВЧ волны превращают жидкость в организме насекомых в пар. Например, так можно избавиться от жуков-древоточцев, живущих в деревянных постройках. Само дерево при воздействии не повреждается.
  • Плавим цветной металл — мощности магнетрона для этого вполне хватит. Не забудьте про термоизоляцию!
  • Сушим и стерилизуем от вредителей и бактерий крупы.
  • Избавляемся от прослушки и прочей «шпионской» техники в помещении — направленное СВЧ излучение магнетрона уничтожит всех электронных «жучков» с той же лёгкостью, что и древоточцев.
  • Добиваемся эффекта «стоп-быдлососед» — даже через две стены вы сможете «уменьшить звук» соседского музыкального центра или телевизора (смотрите видео ниже).

http://vk.com/video_ext.php

Как прокормить рэйлган

Эрозия и абляция (испарение) рельсов, проблемы скользящего контакта и конструктивной прочности — это сущие мелочи по сравнению с отсутствием источников энергии, способных оперативно предоставить в распоряжение стрелка импульс в сотни тысяч ампер. Именно этой проблеме мы обязаны тем, что рэйлганы до сих пор не стоят на вооружении.

Сегодня самый распространенный импульсный источник энергии — батарея конденсаторов. Конденсаторы, применяемые в экспериментальных установках, представляют собой огромные цилиндры объемом в несколько кубометров. Они могут часами накапливать электрическую энергию (время заряда зависит от мощности ее источника), чтобы затем разом направить ее на рельсы.

Относительно компактный источник импульсного тока в полевых условиях — генератор постоянного тока, или униполярный генератор. В импульсном генераторе энергия накапливается в форме кинетической энергии вращающегося массивного проводящего ротора. Он постепенно разгоняется до очень большой скорости, потом включается внешнее магнитное поле (поле возбуждения генератора), и в цепи появляется импульс тока. Вращение ротора резко замедляется, а его кинетическая энергия переходит в кинетическую энергию снаряда. Для униполярного генератора характерно весьма скромное выходное напряжение, но очень большой выходной ток — то что надо для рельсотрона.


Электрический космодром По проекту ГНЦ РФ ТРИНИТИ гигантский рельсотрон будет выводить спутники на орбиту. Полетная сборка представляет собой
собственно космический аппарат и пару
разгонных ступеней, заключенных в аэродинамический обтекатель. Обтекатель
устанавливается внутри первой разгонной секции на специальные опоры, за ним располагается металлический толкающий якорь. В момент запуска на разгонные секции длиной 10−20 м каждая подается ток. Секции включаются по очереди по мере продвижения полетной сборки. Каждую из них питает собственный накопитель СПИН, что позволяет
отказаться от длинных высоковольтных
токопроводов, в которых неизбежны
энергетические потери. Общая длина
разгонной системы достигает 3,7 км. После того как полетная сборка покидает
рельсотрон на скорости 2 км/с, аэродинамический обтекатель раскрывается и отделяется от космического аппарата.
Включается двигатель разгонной ступени, и аппарат выводится на орбиту.

Взрывомагнитный генератор, использующий энергию взрывчатых веществ для формирования мощного электрического импульса, может применяться для питания рельсотрона исключительно в экспериментальных целях, ибо ему присущи все эксплуатационные недостатки огнестрельного оружия, с которыми призваны бороться электромагнитные ускорители.

Наиболее перспективный источник энергии для рэйлгана называется СПИН — сверхпроводящий индуктивный накопитель энергии. Энергия в нем запасается в виде магнитного поля, возникающего в процессе циркуляции постоянного тока в катушке из сверхпроводника. Основные компоненты СПИН — сверхпроводящая катушка, система индуктивной зарядки/разрядки и система охлаждения, поддерживающая в катушке критическую температуру перехода в состояние сверхпроводимости. Потери энергии при зарядке/разрядке СПИН не превышают 5% — это рекордный показатель. Но определенное количество энергии расходуется на работу мощной системы охлаждения. К примеру, критическая температура для обмоточных сверхпроводников на основе сплава NbTi или NbTri составляет около 10 К (-263˚С). Применение высокотемпературных сверхпроводников может снизить энергетические расходы на охлаждение — им требуется температура в районе -100˚С. Однако стоимость самого СПИН в этом случае радикально возрастет, ведь высокотемпературные проводники представляют собой сложные многоэлементные керамики, из которых весьма непросто изготовить многокилометровый провод для катушки. Особые требования предъявляются к прочности конструкции СПИН: на сверхпроводник также действует сила Лоренца, которая стремится буквально разорвать катушку на части.

Возможности самодельной пушки из микроволновки

Как же можно использовать приспособление? Оказывается, пушка из магнетрона, серьёзно воздействует на бытовые приборы:

  • Она имеет ту же частоту что и wi-fi. Поэтому можно запросто сбросить соседский wi-fi роутер.
  • Две стены не будут препятствием, для убавления звука в телевизоре глухого соседа. Но будьте внимательны со своими приборами, так как в 10 м от пушки телефон может зависнуть, а в компьютере и телевизоре искажается звук. Нельзя воздействовать на приборы слишком долго — возможен взрыв.

Испытание СВЧ-пушки

  • Развлечь друзей можно лампами дневного света, которые под воздействием пушки зажигаются на большом расстоянии.
  • Жуки древоточцы, живущие в строениях из дерева, запросто уничтожаются пушкой СВЧ.
  • Также можно простерилизовать крупы от бактерий и избавиться от жуков СВЧ пушкой измикроволновки, заводящихся внутри сыпучих продуктов.
  • Мощи магнетрона хватит для того, чтобы расплавить цветной металл.
  • Можно вскипятить не слишком большое количество воды.

Став конструктором, соблюдайте технику безопасности. Нельзя включать аппарат надолго, так как он сильно нагревается. Помните — излучения СВЧ волн на организм человека полностью не изучено. Не используйте подобное излучение без личной защиты и старайтесь избегать ситуаций, несущих риск несчастных случаев!

Для большей доступности в конструировании можно просмотреть видео youtube.

«Комплекс проблем»

С середины 2000-х годов над созданием электромагнитной пушки работает британская корпорация BAE Systems вместе с учёными США. Проект реализуется в интересах американских ВМС. Испытания проходят на полигоне Центра разработки надводного оружия Военно-морских сил США в Дальгрене (штат Вирджиния). В общей сложности Пентагон инвестировал в НИОКР рельсотрона около $500 млн.

Предполагалось, что электромагнитная пушка пополнит штатное вооружение эскадренных миноносцев класса Zumwalt, выполненных по стелс-технологии. Однако программа строительства эсминцев провалилась из-за их высокой стоимости и недостаточной боевой эффективности.

Также по теме

«В новую гонку вооружений Россию втягивать бесполезно»: о чём говорят испытания «гиперскоростных снарядов» в США

ВМС США провели испытания примерно 20 «гиперскоростных снарядов». Манёвры состоялись ещё в середине прошлого года, однако…

Военно-морские силы США планировали получить 32 эскадренных миноносца Zumwalt, но сейчас в составе флота находятся только два корабля, ещё два достраиваются на американских верфях.

«Есть все основания полагать, что Zumwalt не станет носителем рельсотрона, хотя этот корабль создавался именно для этой задачи. Американцы свернули его серийное производство, потому что энергетика этого невероятно дорогого эсминца оказалась не в состоянии обеспечивать потребности электромагнитной пушки», — сказал Кнутов. 

Как полагает собеседник, в обозримой перспективе рельсотрон не будут устанавливать на боевые корабли ВМС США. По мнению Кнутова, находящиеся в составе американского флота эсминцы Arleigh Burke и крейсеры Ticonderoga не приспособлены для применения этого электромагнитного оружия.

  • Эсминец класса Zumwalt Michael Monsoor

Единственным исключением может стать головной американский авианосец класса Gerald R. Ford, оснащённый атомной энергоустановкой. Однако, как отмечает эксперт, корабль испытывает серьёзные технические проблемы и требует доработки, которая растянется на несколько лет.

«На мой взгляд, обеспокоенность Ричардсона вызвана тем, что проект, запущенный в интересах ВМС США, на который было потрачено полмиллиарда долларов, не приносит конкретного практического результата флоту. На мой взгляд, наиболее реалистичным вариантом для Соединённых Штатов станет использование рельсотрона в космосе в рамках обновлённой программы ПРО», — сказал Кнутов.

Однако, как считает эксперт, BAE Systems придётся решить проблемы с генерацией и накоплением электрической энергии, а также точностью стрельбы. В частности, британские и американские инженеры должны разработать компактные энергоустановки, более мощные конденсаторы, новые снаряды и систему управления. 

По словам Кнутова, на сегодняшний день рельсотроны выстреливают неуправляемыми снарядами, точность которых может быть невысокой. По этой причине рано или поздно американским учёным придётся создавать управляемые боеприпасы.

«Это повлечёт за собой новый комплекс проблем — значительное удорожание производства и необходимость разработки электроники, которая не сгорала бы на гиперзвуковых скоростях. С большой долей вероятности можно предположить, что в ближайшие годы рельсотрон не поступит на вооружение США», — прогнозирует эксперт.

Аналогичной точки зрения придерживается и Дрозденко. Собеседник констатировал, что на сегодняшний день для электромагнитной пушки не создан подходящий снаряд. Как пояснил аналитик, для стрельбы используются боеприпасы из тугоплавкого вольфрама. Данный вид припаса отличается высокой стоимостью, а процесс его производства остаётся слишком сложным.

Преимущества и недостатки

  • Использование рельсотрона исключает необходимость хранить на кораблях боезапас обычных снарядов, что повышает живучесть корабля.
  • Сравнительно небольшие размеры снарядов для рельсотрона позволяют увеличить боезапас. Однако размер системы в целом при том весьма не мал, и как минимум занимает места не меньше, чем несколько ПКР средних размеров.
  • Дальность эффективного огня рельсотрона — до 200 км, однако на это можно возразить, что наибольшей эффективной дальностью для артиллерии является 20-40 км, а на большей дистанции приходится или использовать корректируемый в полёте снаряд, или же многократно возрастёт расход боеприпасов.
  • Высокая скорость снаряда позволяет использовать рельсотрон в качестве средства ПВО. Скорость снаряда перспективной пушки, испытания которой планировались на 2016 год, должна была составить 6 М, что существенно ниже многих зенитных ракет (9 М для одной из ракет С-300В4), маневрирование снаряда невозможно; на практике удалось достичь лишь скорости 3,6 М.
  • Никаких доказательств эффективности не предъявлено за много лет, особенно в смысле точности и разрушительной силы. Более того, при сверхдальней стрельбе возникает проблема неоднородной кривизны Земли, гравитационные неравномерности, перепад температур и соответственно плотности воздуха, как и влажности и многие другие проблемы, ограничивающие точную стрельбу артиллерии некорректируемыми снарядами дальностью в считанные десятки км.
  • Пробиваемость, в частности (на больших дальностях), и воздействие в целом при попадании не превышает показатели артиллерии средних калибров (скорость в несколько раз больше, но масса в несколько раз меньше, взрывчатого вещества вместо многих килограмм — ноль, единственная разница — в росте дальности из-за сочетания массы, скорости и, в первую очередь, сократившихся размеров, что снижает аэродинамическое сопротивление). Кинетическая энергия снаряда при пробитии не передаётся сверх необходимого для преодоления преграды именно в силу высокой скорости снаряда. Т.е. если снаряд имеет энергию 3 единицы, а чтобы пробить мишень, хватает 1 единицы, то снаряд пробивает дырку и с оставшейся энергией движется дальше. У него нет заряда, поэтому всё воздействие на цель ограничивается пробитием в ней дырки. Правда, при очень высоких скоростях тут есть нюансы, но по поражающему действию они несравнимы со взрывчаткой.[прояснить][источник не указан 272 дня]
Преимущества

Экономия: стоимость выстрела рельсотрона существенно ниже таковой для аналогичной по дальности ракеты корабельного базирования: 25 тыс. долл. США против 1 млн долл..

При условии решения всех задач, связанных с реальным применением, такие орудия могут обеспечивать тактическую стационарную ПРО против никак не маневрирующих баллистических ракет, либо расширить горизонт дальности стрельбы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector