«величайшая ошибка» эйнштейна: учёные объяснили природу тёмной энергии и тёмной материи
Содержание:
Анализ Форварда
Хотя неизвестны частицы с отрицательной массой, физики (первоначально Г. Бонди и Роберт Форвард) смогли описать некоторые из ожидаемых свойств, которыми могут обладать такие частицы. Предполагая, что все три вида масс равны, можно построить систему, где отрицательные массы притягиваются к положительным массам, в то же время положительные массы отталкиваются от отрицательных масс. В то же время отрицательные массы будут создавать силу притяжения друг к другу, но будут при этом отталкиваться из-за своих отрицательных инерциальных масс.
При отрицательном значении mp{\displaystyle m_{p}} и положительном значении ma{\displaystyle m_{a}}, сила F{\displaystyle F} будет отрицательной (отталкивающей). На первый взгляд это выглядит так, как будто отрицательная масса будет ускоряться в сторону от положительной массы, но поскольку такой объект будет также обладать отрицательной инерциальной массой, он будет ускоряться в направлении, противоположном F{\displaystyle F}. Более того, Бонди показал, что если обе массы равны по абсолютной величине, но отличаются знаком, то общая система положительных и отрицательных частиц будет ускоряться бесконечно без какого-либо дополнительного влияния на систему снаружи.
Это поведение странно в том, что оно абсолютно не сочетается с нашим представлением об «обычной вселенной» из работы с положительными массами. Но оно полностью математически состоятельно и не вводит каких-либо противоречий.
Может сложиться впечатление, что такое представление нарушает закон сохранения импульса и/или энергии, но у нас массы равны по абсолютной величине, одна при этом положительна, а другая отрицательна, а значит, импульс системы равен нулю, если они обе двигаются вместе и ускоряются вместе, независимо от скорости:
- Psys=mv+(−m)v=m+(−m)v=×v={\displaystyle P_{sys}=mv+(-m)v=v=0\times v=0.}
И такое же уравнение может быть вычислено для кинетической энергии Ke{\displaystyle K_{e}}:
- Ke sys=12mv2+12(−m)v2=12m+(−m)v2=12()v2={\displaystyle K_{e\ sys}={1 \over 2}mv^{2}+{1 \over 2}(-m)v^{2}={1 \over 2}v^{2}={1 \over 2}(0)v^{2}=0}
Форвард расширил исследования Бонди на дополнительные случаи и показал, что даже если две массы m−{\displaystyle m_{-}} и m+{\displaystyle m_{+}} не равны по абсолютной величине, то уравнения всё равно остаются непротиворечивыми.
Некоторые свойства, которые вводятся этими предположениями, выглядят необычно, например, в смеси газа из положительной материи и газа из отрицательной материи положительная часть будет увеличивать свою температуру бесконечно. Однако, в таком случае отрицательная часть смеси будет охлаждаться с той же скоростью, тем самым выравнивая баланс. Джеффри А. Лэндис (англ.)русск. отметил другие приложения анализа Форварда, включая указания на то, что хотя частицы с отрицательной массой и будут отталкиваться друг от друга гравитационно, но электрические силы, например, заряды будут притягиваться друг к другу (в отличие от частиц с положительной массой, где такие частицы отталкиваются). В результате для частиц с отрицательной массой это означает, что гравитационные и электростатические силы поменяются местами.
Форвард предложил конструкцию двигателя космических кораблей с использованием отрицательной массы, который не требует притока энергии и рабочего тела, чтобы получить сколь угодно большое ускорение, хотя, конечно, основным препятствием является то, что отрицательная масса остаётся полностью гипотетической.
Форвард также ввёл термин «нуллификация» для описания того, что происходит, когда встречаются обычная и отрицательная материя. Ожидается, что они могут взаимно уничтожиться или «обнулить» существование друг друга, причём после этого не останется никакой энергии. Однако легко показать, что некоторый импульс может остаться (его не останется, если они движутся в одном направлении, как описано выше, но им нужно двигаться навстречу друг другу, чтобы встретиться и взаимно обнулиться). Это может, в свою очередь, объяснить, почему равные количества обычной и отрицательной материи не появляются внезапно из ниоткуда (противоположность нуллификации): в этом событии не будет сохранён импульс у каждой из них.
Создано вещество со свойствами отрицательной массы +29
- 12.04.17 01:15
•
alizar
•
#288006
•
Гиктаймс
•
•
46700
Научно-популярное, Физика, Научная фантастика
Гипотетическая червоточина в пространстве-времени
В теоретической физике, отрицательная масса — это концепция о гипотетическом веществе, масса которого имеет противоположное значение массе нормального вещества (также как электрический заряд бывает положительный и отрицательный). Например, ?2 кг. Такое вещество, если бы оно существовало, нарушало бы одно или несколько энергетических условий и проявляло бы некоторые странные свойства. По некоторым спекулятивным теориям, вещество с отрицательной массой можно использовать для создания червоточин (кротовых нор) в пространстве-времени.
Звучит как абсолютная фантастика, но сейчас группе физиков из Университета штата Вашингтон, Вашингтонского университета, Университета OIST (Окинава, Япония) и Шанхайского университета удалось получить вещество, которое проявляет некоторые свойства гипотетического материала с отрицательной массой. Например, если толкнуть это вещество, то оно ускорится не в направлении приложения силы, а в обратном направлении. То есть оно ускоряется в обратную сторону.
Для создания вещества со свойствами отрицательной массы учёные подготовили конденсат Бозе — Эйнштейна, охладив атомы рубидия почти до абсолютного нуля. В этом состоянии частицы двигаются исключительно медленно, а квантовые эффекты начинают проявляться на макроскопическом уровне. То есть в соответствии с принципами квантовой механики частицы начинают вести себя как волны. Например, они синхронизируются между собой и протекают через капилляры без трения, то есть не теряя энергии — эффект так называемой сверхтекучести.
В лаборатории Университета штата Вашингтон были созданы условия для образования конденсата Бозе — Эйнштейна в объёме менее 0,001 мм?. Частицы замедлили лазером и дождались, когда наиболее энергичные из них покинули объём, что ещё больше охладило материал. На этом этапе сверхкритическая жидкость ещё имела положительную массу. При нарушении герметичности сосуда атомы рубидия разлетелись бы в разные стороны, поскольку центральные атомы выталкивали бы крайние атомы наружу, а те ускорялись бы в направлении приложения силы.
Для создания отрицательной эффективной массы физики применили другой набор лазеров, который изменял спин части атомов. Как предсказывает симуляция, в отдельных районах сосуда частицы должны приобрести отрицательную массу. Это хорошо видно по резкому увеличению плотности вещества как функции от времени в симуляциях (на нижней диаграмме).Рисунок 1. Анизотропное расширение конденсата Бозе — Эйнштейна с разными коэффициентами силы сцепления. Реальные результаты эксперимента обозначены красным, результаты предсказания в симуляции — чёрным
Нижняя диаграмма — это увеличенный фрагмент среднего кадра в нижнем ряду рисунка 1.
На нижней диаграмме показана одномерная симуляция общей плотности как функции от времени в регионе, где впервые проявилась динамическая нестабильность. Пунктирами разделены три группы атомов со скоростями в квазимомент , где эффективная масса начинает становиться отрицательной (верхняя линия). Показана точка минимальной отрицательной эффективной массы (посередине) и точка, где масса возвращается к положительным значениям (нижняя линия). Красные точки обозначают места, где локальный квазимомент лежит в районе отрицательной эффективной массы.
На самом первом ряду графиков видно, что во время физического эксперимента вещество вело себя в точном соответствии с результатами симуляции, которая предсказывает появление частиц с отрицательной эффективной массой.
В конденсате Бозе — Эйнштейна частицы ведут себя как волны и поэтому распространяются не в том направлении, в каком должны распространяться нормальные частицы положительной эффективной массы.
Справедливости ради нужно сказать, что неоднократно физики регистрировали во время экспериментов результаты, когда проявлялись свойства вещества отрицательной массы, но те эксперименты можно было интерпретировать по-разному. Сейчас же неопределённость в большей мере устранена.
Научная статья опубликована 10 апреля 2017 года в журнале Physical Review Letters (doi:10.1103/PhysRevLett.118.155301, доступно по подписке). Копия статьи перед отправкой в журнал размещена 13 декабря 2016 года в свободном доступе на сайте arXiv.org (arXiv:1612.04055).
Рубидий вступает в реакцию
Вообще рубидий вступает в реакцию почти со всеми элементами; в литературе описаны его соединения с водородом и азотом (гидриды и нитриды), с бором и кремнием (бориды и силициды),с золотом,кадмием и ртутью (ауриды, кадмиды, меркуриды) и многие другие.
При обычной температуре рубидий разлагает воду столь бурно, что выделяющийся водород тут же воспламеняется. При 300° С его пары разрушают стекло, вытесняя из него кремний. Известно, что многие металлы обладают фотоэлектрическими свойствами.
Свет, попадающий на катоды, изготовленные из этих металлов, возбуждает в цепи электрический ток. Но если в случае платины, например, для этого требуются лучи с очень малой длиной волны, то у рубидия, напротив, фотоэффект наступает под действием наиболее длинных волн видимого спектра — красных.
Это значит, что для возбуждения тока в рубидиевом фотоэлементе требуются меньшие затраты энергии. В этом отношении рубидий уступает только цезию, который чувствителен не только к световым, но и к невидимым инфракрасным лучам.
Исключительно высокая активность рубидия проявляется и в том, что один из его изотопов —87Rb (а на его долю приходится 27,85% природных запасов рубидия) — радиоактивен: он самопроизвольно испускает электроны (бета-лучи) и превращается в изотоп стронция с периодом полураспада в 50—60 млрд. лет. Около 1% стронция образовалось на Земле именно этим путем, и если определить соотношение изотопов стронция и рубидия с атомной массой 87 в какой-либо горной породе, то можно с большой точностью вычислить ее возраст.
Такой метод пригоден применительно к наиболее древним породам и минералам. С его помощью установлено, например, что самые старые скалы американского континента возникли 2100 млн. лет тому назад.
Как видите, у этого внешне непритязательного серебристо-белого металла есть немало интересных свойств. Почему его назвали рубидием? Rubidus — по-латыни «красный». Казалось бы, это имя скорее подходит меди, чем очень обыкновенному по окраске рубидию. Но не будем спешить с выводами. Это название было дано элементу № 37 его первооткрывателями Кирхгофом и Бунзеном.
Гелий-2 и новое явление — сверхтекучесть
Сам по себе Гелий уже уникален. Это единственный газ, который сжижается при самой низкой температуре в -269С. И ещё, при дальнейшем охлаждении он сохраняет жидкое состояние, хотя все остальные вещества на Земле становятся твердыми. Но и это ещё не все. В 1937 году известный советский учёный Пётр Леонидович Капица провел несколько интересных экспериментов. Они показали, что при температуре ниже -271С жидкий гелий приобретает способность течь без какого-либо трения. Это явление было названо сверхтекучестью. Например, если взять микроскопическую щель, в которую вода будет протекать долгие годы, гелий пройдет через нее за считанные секунды. Это удивительное вещество получило название Гелий-2. Другая сверхспособность гелия-2 — быстро образовывать пленки на твердой поверхности. Пленки любой обычной жидкости совсем тонкие и медленно распространяются по поверхности из-за сильной вязкости. У гелий-2 вязкости вообще нет, поэтому этот процесс протекает в сотни раз быстрее. Примерная скорость — 20 см в секунду.
Этимология и история понятия
Слово масса (лат. massa, от др.-греч. μαζα) первоначально в античные времена обозначало кусок теста. Позднее смысл слова расширился, и оно стало обозначать цельный, необработанный кусок произвольного вещества; в этом смысле слово используется, например, у Овидия и Плиния.
Масса как научный термин была введена Ньютоном как мера количества вещества, до этого естествоиспытатели оперировали понятием веса. В труде «Математические начала натуральной философии» (1687) Ньютон сначала определил «количество материи» в физическом теле как произведение его плотности на объём. Далее он указал, что в том же смысле будет использовать термин масса. Наконец, Ньютон ввёл массу в законы физики: сначала во второй закон Ньютона (через количество движения), а затем — в закон тяготения, откуда сразу следует, что вес пропорционален массе. Ньютон явно указал на эту пропорциональность и даже проверил её на опыте со всей возможной в те годы точностью: «Определяется масса по весу тела, ибо она пропорциональна весу, что мной найдено опытами над маятниками, произведенными точнейшим образом» (эти опыты Ньютон подробно описал в III томе своих «Начал»).
Фактически Ньютон использует только два понимания массы: как меры инерции и источника тяготения. Толкование её как меры «количества материи» — не более чем наглядная иллюстрация, оно сохранялось в XVII—XIX веке, но затем подверглось критике как нефизическое и бессодержательное. В настоящее время понятие «количество вещества» применяется, но имеет совершенно другой смысл.
Долгое время одним из главных законов природы считался закон сохранения массы. Однако в XX веке выяснилось, что этот закон является ограниченным вариантом закона сохранения энергии и во многих ситуациях не соблюдается.
Физические свойства
Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твёрдость по Бринеллю 0,2 МН/м² (0,02 кгс/мм²).
Кристаллическая решётка рубидия кубическая объёмно-центрированная, а = 5,71 Å (при комнатной температуре).
Атомный радиус 2,48 Å, радиус иона Rb+ 1,49 Å.
Плотность 1,525 г/см³ (0 °C), температура плавления 38,9 °C, температура кипения 703 °C.
Удельная теплоемкость 335,2 Дж/(кг·К) [0,08 кал/(г·°С)], термический коэффициент линейного расширения 9,0⋅10−5K−1 (при 0—38 °C), модуль упругости 2,4 ГН/м² (240 кгс/мм²), удельное объёмное электрическое сопротивление 11,29⋅10−6 ом·см (при 20 °C); рубидий парамагнитен.
Флагманская мощь
Realme X3 SuperZoom оснащен достаточно мощным процессором Snapdragon 855+, который впечатляет высочайшей производительностью, уступая каких-то 80-100 тыс. баллов (в бенчмарке AnTuTu) флагманским аппаратам на топовом 865 чипсете. SoC оснащен 8-ми ядерным CPU, выполненным по техпроцессу 7-нм, из которых самое мощное — Kryo 485 работает на частоте до 2,96 ГГц, а еще три — Kryo 485 на 2,42 ГГц. В состав чипа входит видеоядро Adreno 640, работающее на частоте 700 МГц, что обеспечивает плавную четкую картинку в любых требовательных играх. Однако, данный процессор не обладает поддержкой сетей 5G, что можно отнести к минусам.
Хорошим подспорьем в высокой производительности являются 12 ГБайт оперативной памяти LPDDR4X и 256 Гбайт — встроенной, выполненной по стандарту UFS 3.0.
В бенчмарке AnTuTu Realme X3 SuperZoom набрал 508 337 баллов (12 место в рейтинге), в 3DMark — 5 307 и 4 813, в GeekBench — 783 и 2 378 баллов. Примечательно, что в настройках батареи смартфона можно активировать опцию «Высокая производительный», который заставит работать процессор на максимуме в любом приложении, либо «Умный режим повышенной производительности». Последний удобен тем, что в интерфейсе и повседневных программах батарея не будет тратиться на излишнюю мощь, а при запуске ресурсоемких приложений, например, в играх или видеоредакторе, смартфон проявит свой сильный характер. Но и батарея при этом будет тратиться весьма быстро. Например, в стресс-тесте AnTuTu за 15 минут экстремальных нагрузок ушло около 7% заряда батареи. В играх же при активном использовании сенсора дисплея за это же время тратится до 10% заряда и за 1 час расход батареи составляет 40%.
Во время тестирования корпус устройства нагревался незначительно. Это подтвердил и стресс-тест — температура чипа под 15-минутной нагрузкой не превысила 40°. Такой результат, очевидно, достигнут за счет применения в конструкции жидкостного охлаждения процессора.
Для любителей игровых баталий среди предустановленных приложений имеется утилита «Игры». В уже предусмотрены такие прессеты, как «Режим соревнования», «Режим баланса» и «Режим энергосбережения». С их помощью смартфон автоматически настраивается либо на максимальную производительность, либо на сбалансированный или экономный режимы. Программа сразу дает прогноз, на сколько хватит аккумулятора при той или иной схеме работы процессора.
В популярных мобильных играх World of Tanks Blitz, Call of Duty Mobile и PUBG Mobile на смартфоне комфортно было играть на максимальных настройках.
«В какую сторону падает антиматерия?»
Основная статья: Гравитационное взаимодействие антиматерии
Большинство современных физиков полагает, что антиматерия обладает положительной гравитационной массой и должна падать вниз, как и обычная материя. При этом, однако, некоторые исследователи считают, что к настоящему времени нет убедительных экспериментальных подтверждений этому факту. Это связано с трудностью непосредственного исследования гравитационных сил на уровне частиц. На таких малых расстояниях электрические силы берут верх над гораздо более слабым гравитационным взаимодействием. Более того, античастицы должны храниться отдельно от их обычных аналогов, иначе они быстро аннигилируют. Очевидно, что это делает трудным прямое измерение пассивной гравитационной массы антиматерии. Эксперименты над антиматерией ATHENA (англ. ATHENA) и ATRAP (англ. ATRAP) могут скоро дать ответы.
Ответы для инерционной массы, впрочем, давно известны из экспериментов с пузырьковой камерой. Они убедительно показывают, что античастицы имеют положительную инертную массу, равную массе «обычных» частиц, но противоположный электрический заряд. В этих экспериментах камера подвергается воздействию постоянного магнитного поля, что заставляет частицы двигаться по винтовой линии. Радиус и направление этого движения соответствуют отношению электрического заряда к инертной массе. Пары частица-античастица двигаются по винтовым линиям в противоположных направлениях, но с одинаковыми радиусами. Из этого наблюдения делается вывод о том, что их отношения электрического заряда к инертной массе отличаются только по знаку.
Нахождение в природе
Мировые ресурсы рубидия
Содержание рубидия в земной коре составляет 7,8⋅10−3 %, что примерно равно суммарному содержанию никеля, меди и цинка. По распространённости в земной коре рубидий находится примерно на 23-м месте, примерно так же распространённым, как цинк, и более распространённым, чем медь. Однако, в природе он находится в рассеянном состоянии, рубидий — типичный рассеянный элемент. Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,3 %, а изредка и до 3,5 % (в пересчете на Rb2О).
Соли рубидия растворены в воде морей, океанов и озёр. Концентрация их и здесь очень невелика, в среднем порядка 125 мкг/л, что меньше чем значение для калия — 408 мкг/л. В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море — 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.
Из морской воды рубидий перешёл в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15 %. Минерал карналлит — сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула — KCl·MgCl2·6H2O. Рубидий даёт соль аналогичного состава RbCl·MgCl2·6H2O, причём обе соли — калиевая и рубидиевая — имеют одинаковое строение и образуют непрерывный ряд твёрдых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда. Сейчас разработаны и описаны в литературе рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.
Месторождения
Минералы, содержащие рубидий (лепидолит, циннвальдит, поллуцит, амазонит), находятся на территории Германии, Чехии, Словакии, Намибии, Зимбабве, Туркмении и других странах.
В космосе
Аномально высокое содержание рубидия наблюдается в объектах Торна — Житков (состоящих из красного гиганта или сверхгиганта, внутри которого находится нейтронная звезда).