Сколько мусора в нашей днк?

Доля некодирующей геномной ДНК

Количество общей геномной ДНК широко меняется от организма к организму, и доля кодирующей и некодирующей ДНК внутри этих геномов также изменчива в широких пределах. Например, первоначально предполагалось, что свыше 98 % человеческого генома не кодирует последовательностей белков, включая большинство последовательностей внутри интронов и межгенных последовательностей, в то время как, для геномов прокариот типично, что некодирующим является только 20 % генома.

В то время как размер генома, и увеличение количества некодирующей ДНК, коррелирует со сложностью организма, существует множество исключений. Например, геном одноклеточного Polychaos dubium (также известная как Amoeba dubia) содержит более чем в 200 раз больше ДНК, чем у человека. Геном Иглобрюхой рыбы фугу Takifugu rubripes составляет лишь около одной восьмой от размера генома человека, при этом, кажется, с таким же числом генов; приблизительно 90 % генома Takifugu rubripes является некодирующей ДНК. Широкая изменчивость размера ядерного генома среди эукариотических видов известна как C-парадокс (избыточность генома). Большинство различий в размере геномов по-видимому обусловлены некодирующей ДНК.

В 2013, был поставлен новый «рекорд» для наиболее эффективного эукариотического генома Utricularia gibba, растения пузырчатки у которой 3 % некодирующей ДНК и 97 % кодирующей ДНК. Часть некодирующей ДНК была удалена растением, что наводит на мысль, что наличие некодирующей ДНК может не быть критичным для растения, хотя некодирующая ДНК полезна для человека. Другие исследования растений показали ключевую функцию части некодирующей ДНК, которая ранее считалась незначительной и добавили новый пласт знаний для понимания регуляции генов.

Некодирующая ДНК

Существует также альтернативное название «мусорная» ДНК. Однако оно не совсем верно, так как в «некодирующей» ДНК присутствуют транспозоны, кодирующие белки, функция которых пока не установлена, а также некоторые регуляторные элементы.

По одной из версий, некодирующая белок ДНК, по крайней мере частично, используется при производстве различных видов РНК, а именно тРНК, рРНК, микроРНК, малые ядерные РНК, малые ядрышковые РНК. Все эти РНК участвуют в критически важных процессах жизнедеятельности клеток и даже многоклеточных организмов (см. РНК-интерференция).[источник не указан 3756 дней]

В геномике и родственных дисциплинах, последовательности некодирующей ДНК — это часть ДНК организмов, которая не кодирует последовательности белков. Некоторые последовательности некодирующей ДНК транскрибируются в фунциональные молекулы некодирующей РНК (например, тРНК, рРНК, и регуляторные РНК). Другие функции некодирующей ДНК включают транскрипционную и трансляционную регуляцию белок-кодирующих последовательностей, SAR-последовательности, точки начала репликации, центромеры и теломеры.

Количество некодирующей ДНК значительно меняется от вида к виду. Там где только маленький процент генома отвечает за кодирование белков, процент геномной ДНК, выполняющей регуляторные функции растет. Если в геноме много некодирующей ДНК, бóльшая часть судя по всему не несет никакой биологической функции для организма, как теоретически предсказано в 1960-х. С того времени, это нефункционирующая часть часто упоминается как «мусорная ДНК», термин, который вызывал бурную реакцию в течение многих лет.

В ходе международного проекта (ENCODE) обнаружено, путем прямых биохимических исследований, что по крайней мере 80 % геномной ДНК человека имеет биохимическую активность. Хотя это не является полной неожиданностью, так как в течение предыдущих десятилетий исследований было открыто много функциональных некодирующих регионов, некоторые исследователи подвергают критике вывод о связи биохимической активности с биологической функцией.
По оценке основанной на методах сравнительной геномики доля биологически значимой части нашего генома находится в диапазоне между 8 и 15 %. Однако, другие имеют аргументы против того, чтобы полагаться исключительно на оценки сравнительной геномики в связи с её ограниченными возможностями, так как было показано, что некодирующая ДНК участвует в эпигенетических процессах и в комплексе сложных взаимосвязанных генетических взаимодействий.

Примечания[править | править код]

  1. ↑ The Evolution of the Genome / Gregory, T. Ryan. — Elsevier, 2005. — С. 29—31. — ISBN 0123014638.. — «Comings (1972), on the other hand, gave what must be considered the first explicit discussion of the nature of «junk DNA,» and was the first to apply the term to all noncoding DNA.»; «For this reason, it is unlikely that any one function for noncoding DNA can account for either its sheer mass or its unequal distribution among taxa. However, dismissing it as no more than «junk» in the pejorative sense of «useless» or «wasteful» does little to advance the understanding of genome evolution. For this reason, the far less loaded term «noncoding DNA» is used throughout this chapter and is recommended in preference to «junk DNA» for future treatments of the subject.»».
  2. So much «junk» DNA in our genome, In Evolution of Genetic Systems; S. Ohno. / H. H. Smith. — Gordon and Breach, New York, 1972. — С. 366—370.
  3. Another source is genome duplication followed by a loss of function due to redundancy.
  4. Carey, Nessa. Junk DNA: A Journey Through the Dark Matter of the Genome (англ.). — Columbia University Press, 2015. — ISBN 9780231170840.
  5. ↑ Non-Coding RNAs and Epigenetic Regulation of Gene Expression: Drivers of Natural Selection (англ.) / Morris, Kevin. — Norfolk, UK: Caister Academic Press (англ.)русск., 2012. — ISBN 1904455948.
  6. .
  7. Costa, Fabrico. 7 Non-coding RNAs, Epigenomics, and Complexity in Human Cells // Non-coding RNAs and Epigenetic Regulation of Gene Expression: Drivers of Natural Selection (англ.) / Morris, Kevin V.. — Caister Academic Press (англ.)русск., 2012. — ISBN 1904455948.
  8. .
  9. . nature.com. Nature. Дата обращения 21 февраля 2016.

«Тэйлситтеры»

Один из первых самолетов вертикального взлета. /Фото: popmech.ru

Пожалуй, концепция вертикально взлетающего летательного аппарата появилась едва ли не с начала эпохи авиации, однако попытки воплотить ее в жизнь были предприняты гораздо позже. Так, одна из первых разработок, призванных удовлетворить данный запрос, был открыт к середине прошлого века.

Проект по созданию так называемых «Тэйлситтеров» был начат в 1950 году, а представлял собой одну из первых вариантов самолетов, «сидящих на хвосте», то есть таких, которые взлетали бы вертикально. Казалось бы, что успешно отстроенные опытные образцы обеспечат успешный исход испытаний, однако на деле все случилось иначе

Выяснилось, что взлёт и приземление самолетов данного типа требовали от летчиков большой осторожности и мастерства. Угроза жизни управлении и стали причиной закрытия проекта, хотя основные составляющие концепта тэйлситтеров в дальнейшем использовались при создании летающих дронов

Примечания

  1. ↑ The Evolution of the Genome. — Elsevier, 2005. — P. 29–31. — «Comings (1972), on the other hand, gave what must be considered the first explicit discussion of the nature of «junk DNA,» and was the first to apply the term to all noncoding DNA.»; «For this reason, it is unlikely that any one function for noncoding DNA can account for either its sheer mass or its unequal distribution among taxa. However, dismissing it as no more than «junk» in the pejorative sense of «useless» or «wasteful» does little to advance the understanding of genome evolution. For this reason, the far less loaded term «noncoding DNA» is used throughout this chapter and is recommended in preference to «junk DNA» for future treatments of the subject.»». — ISBN 0123014638.
  2. S. Ohno, In Evolution of Genetic Systems. Ошибка: не задан параметр в шаблоне {{публикация}}. — 1972. — P. 366-370.
  3. Another source is genome duplication followed by a loss of function due to redundancy.
  4. Carey, Nessa. Junk DNA: A Journey Through the Dark Matter of the Genome. — Columbia University Press, 2015. — ISBN 9780231170840.
  5. ↑ Non-Coding RNAs and Epigenetic Regulation of Gene Expression: Drivers of Natural Selection. — Norfolk, UK : Caister Academic Press, 2012. — ISBN 1904455948.
  6. .
  7. Costa, Fabrico. 7 Non-coding RNAs, Epigenomics, and Complexity in Human Cells // Non-coding RNAs and Epigenetic Regulation of Gene Expression: Drivers of Natural Selection. — Caister Academic Press, 2012. — ISBN 1904455948.
  8. .

Наземные боевые роботы

Неудачная попытка создать боевого робота. /Фото: popmech.ru

Когда в конце 1990-х — первой половине 2000-х годов беспилотные летательные аппараты доказали свою эффективность во время военных конфликтов на Среднем Востоке, они стали одним из основных типов оружия армии США. В свою очередь наземные роботы в большинстве остались на периферии.

Переломить ситуацию решили в 2007 году во время боевых действий в Ираке. Туда были отправлены наземные боевые роботы, представленные модифицированными для стрельбы роботами TALON. Однако их история закончилась не начавшись, и в реальных полевых условиях в пекле войны они так и не побывали. А все потому, что они откровенно провалили испытания, во время которых над ними было потеряно управление, и роботы попросту вышли из строя.

Boeing YAL-1

Самолет, который должен был сбивать противника лазером. /Фото: medium.com

Boeing YAL-1 — это концепт экспериментального боевого самолёта, которых должен был уничтожать вражеские объекты, в том числе баллистические ракеты, используя мощный химический (бортовой) лазер. Первые упоминания о подобной программе датируются еще концом восьмидесятых, однако первые реальные результаты были получены в 2002 году, когда был собран, оставшийся единственным, опытный образец самолета с необычной возможностью уничтожения вражеского оружия и техники.

Главным плюсом данной системы была возможность ликвидации стартующих баллистических и крылатых ракет с ядерной боевой частью еще на начальном участке траектории полета. Однако даже эта многообещающая технология оказалась беззащитна перед банальным сокращением военного бюджета США. Именно по этой причине в 2001 году проект был закрыт, а еще три года спустя единственный образец Boeing YAL-1 утилизировали.

Предшественники микроРНК

МикроРНК представляют собой короткие одноцепочечные РНК длиной от 18 до 22 нуклеотидов. Процессинг микроРНК включает два основных этапа. На первом этапе длинный транскрипт, считанный с гена микроРНК и обозначаемый «при-микроРНК», разрезается на более короткие предшественники — пре-микроРНК. Далее пре-микроРНК выходят из ядра в цитоплазму и разрезаются на собственно микроРНК. Понятно, что микроРНК слишком коротки, чтобы что-то кодировать. А вот предшественники, например, при-микроРНК, вполне могут содержать открытые рамки считывания. Кроме того, при-микроРНК имеют кэп на 5′-конце и поли(А)-хвост на 3′-конце, как мРНК.

Expeditionary Fighting Vehicle (EFV)

Боевая машина Expeditionary Fighting Vehicle. /Фото: naked-science.ru

Еще одна амбициозная задумка, однако теперь в виде одного образца техники. Проект Expeditionary Fighting Vehicle должен был подарить американской армии инновационную амфибийную боевую машину, удовлетворяющую нужды морских пехотинцев США. На первых порах, EFV была довольно перспективной: в ней объединились немалая боевая мощь, хорошая защита и приличная скорость.

Однако на этапе испытаний был выявлен ряд недостатков, которые фактически поставили крест на массовом производстве EFV. Так, например, машина никак не могла разогнаться до максимальной скорости на воде, ее силовая установка оказалась весьма капризной. Кроме того, морских пехотинцев откровенно оттолкнула цена амфибии – около 25 млн долларов за единицу. Даже сам концепт EFV подвергся критике, ведь к тому времени противокорабельные средства были достаточно эффективными, и защита машины оказывалась перед ними уязвимой.

Расшифровка полученных данных

Расшифровка данных заключается в кропотливом сравнении положения генов и их формы с базой данных эталонов. Так выявляется, как ген ведет себя, и к каким последствиям приводит его индивидуальная деятельность и деятельность в связке с другими генами.

Расшифровка занимает больше время, чем другие этапы анализа.

Диагностика заболеваний

Наверно наиболее полезное для людей и перспективное направление генетических исследований – это диагностика заболеваний на ранних стадиях, и даже раньше. На сегодняшний день тестирование позволяет:

  •  Выявить вариабельные гены. Это, когда сам человек не подвержен болезни, но может передать её следующему поколению.
  •  Определить износ клеток — клеточное старение. Основным фактором, который влияет на возможность клетки к делению, является длинна теломеров внутри неё. С каждым последующим делением теломеры становятся немного короче, и так до момента утраты клеткой способности к делению. Есть способы, которые позволяют удлинить теломеры и тем самым продлить свою молодость.
  •  Провести анализ на общее состояние здоровья для составления индивидуальной диеты и графика нагрузок. Тестирование позволяет выявить аллергены и противопоказания.
  •  Выявить предрасположенность к самым опасным и распространённым заболеванием тысячелетия, и провести предупреждающие профилактические мероприятия.

Родство

Самый востребованный среди обычных людей анализ ДНК – это тестирование на отцовство. Не редко к нему прибегают одинокие матери, что бы привлечь отца к ответственности и заставить выплачивать алименты. Бывает, что положительный результат исследований дает право претендовать на получение наследства.

Но этим возможности исследований не ограничиваются:

     Сиблинговый тест – позволяет выявить родство и его степень (прямое, двоюродное, троюродное и т.д.)  между потенциальными братьями и сестрами. Не редко тестирование затрагивает тонкие вопросы родственных взаимоотношений и запретных связей.
     Опосредованный тест на отцовство, или генетическая реконструкций – позволяет выявить родственные связи с семьёй со сторонгы отца, без самого отца.
     Установление Отцовства. Порой, если того требуют обстоятельства, то и материнства.
     И даже тесты для близнецов, которые выявляют, какие близнецы, гетерозиготные или монозиготные

Это бывает важно, например, для принятия решения о донорстве органов.

Генетическая экспертиза

ДНК экспертиза личности это почти 100%ый способ установить личность человека по мельчайшим биообразцам его тканей и физиологических жидкостей. Чаще всего это необходимо в криминалистике для установления всех участников трагедии, выяснении личности предполагаемого убийцы, или жертвы, если ни как иначе определить личность не представляется возможным. Бывает, что вследствие травм, или болезней, человек может потерять ориентацию и забыть где он живет, и как его звать – в таких случая ДНК-анализ позволяет определить, кто это и найти родственников данного человека.

Длинные некодирующие РНК

К числу длинных некодирующих РНК относят нкРНК, длина которых превышает 200 нуклеотидов. В клетках днкРНК вовсе не являются диковинкой: по оценкам, в человеческом геноме имеется около 16 тысяч генов, которые в общей сложности кодируют 28 тысяч длинных некодирующих РНК. Таких РНК больше, чем генов, которые их кодируют, потому что транскрипт, считанный с одного гена, разрезается на несколько самостоятельных молекул, каждая из которых функционирует как днкРНК. Группа длинных некодирующих РНК очень разнородна: некоторые ее представители являются антисмысловыми РНК (то есть транскриптами, считанными с белок-кодирующих генов, но в обратном направлении); другие соответствуют вырезанным из мРНК интронам; наконец, третьи считываются с длинных межгенных промежутков.

О нокауте и нокдауне читайте в статье нашего спецпроекта «12 методов в картинках» «Генная инженерия. Часть II: инструменты и техники» .

У мышей есть пептид миорегулин (MLN), состоящий из 46 аминокислотных остатков и считывающийся с длинной некодирующей РНК. Он синтезируется в скелетных мышцах, но не в сердечной и гладких мышцах. Миорегулин связывается с изоформой кальциевой АТФазы саркоплазматического ретикулума, специфичной для скелетных мышц, и подавляет её работу, препятствуя откачке кальция из цитоплазмы в саркоплазматический ретикулум. Мыши, нокаутные по миорегулину, оказываются выносливее мышей дикого типа и имеют бóльшее содержание кальция в саркоплазматическом ретикулуме .

Мышиная длинная некодирующая РНК, известная как DWORF, тоже специфична для мышечной ткани и содержит открытую рамку считывания из 34 кодонов. Соответствующий пептид также взаимодействует с кальциевой АТФазой саркоплазматического ретикулума, препятствуя ее связыванию с миорегулином и другими пептидами, подавляющими ее активность, и таким образом способствует ее активной работе .

XM29 OICW

Футуристическая винтовка, так и не вышедшая в серию. /Фото: wikiрedia.org

В девяностых годах прошлого века две компании — американской Alliant Techsystems и немецкой Heckler & Koch — начали разработку совместной программы по созданию принципиально нового вида оружия, построенного по модульной схеме: в результате должна была получиться наполовину винтовка со стандартными пулями 5.56 мм, наполовину гранатомёт калибра 20 мм с боезапасом осколочного боеприпаса дистанционного (воздушного) подрыва.

Примерно в 1999 году необычный концепт обрел материальную форму в виде модели XM29 OICW. При многообещающих технических характеристиках внешний вид оружия оказался соответствующим — неоднократно отмечалось, что оно похоже на футуристическую «пушку» из видеоигр. Однако на деле концепт не оправдал ожидания заказчиков, оказавшись малоэффективным: неудовлетворительное поражающее действие гранаты, а также «неприемлемая масса» самого оружия поставило точку в его дальнейшей разработке, и проект был закрыт в 2004 году.

Молекула ДНК – что нужно знать?

ДНК в каждой клетке человека содержит один и тот же код, но у каждого человека он свой. Это уникальный код ДНК, по которому можно идентифицировать самого человека и его детей. Мы получаем свой код ДНК от наших биологических родителей в равных количествах – по 25% от каждого из родителей. Остальные 50% это наш личный код. Поэтому у родных братьев и сестер ДНК совпадают на 50%, что помогает при помощи теста легко это определить.

Напомню, что в клетке человека содержится 46 хромосом. Если попробовать размотать каждую хромосому и расположить ее от начала к концу, то в результате получится длинная двухцепочечная спираль ДНК длиной около 3 метров – и все это из одной микроскопической человеческой клетки. Спираль ДНК выглядит как винтовая лестница. «Ступени» состоят из четырех нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). Расположение этих молекул называется последовательностью ДНК, которая определяет все индивидуальные характеристики организма. Это генетический код в котором записано, когда, сколько и каких белков будет произведено в нашем теле – начиная от формирования в виде эмбриона до самой смерти. По сути, это инструкции, которые определяют наши физические характеристики и функции организма. Эти инструкции содержатся в единицах, называемых генами.

Анализ ДНК

Во время зачатия плод получает от родителей генетический материал, который является уникальным и неповторимым. Для забора на анализ ДНК берутся различные биологические материалы человека, в которых содержится его генетическая информация – кровь, слюна, волос, кожа, естественные выделения.

На основе тщательного исследования проводится их сравнение и наличие совпадений генетических цепей. Ошибок быть не может, экспертиза ДНК находится под строгим контролем ученых, тем более что полученные результаты перепроверяются – они должны либо дважды подтверждаться, либо опровергаться. Такой подход дает невероятную точность, с которой пока не могут сравниться любые другие методики на проведение родства.

Экспертиза ДНК является наиболее точным, практически стопроцентным подтверждение родства. Именно благодаря высокой эффективности и достоверным данным данный метод является главным доказательством в суде, когда идет процедура оспаривания отцовства. Ведь тест ДНК показывает совпадение генов двух людей на 99,9 % либо отрицает факт кровных связей.

Главным минусом такого исследования является его дороговизна, около 15 000 рублей с одного исследуемого материала. Соответственно при установлении отцовства придется заплатить минимум 30 000 рублей. Кроме того, если вы хотите получить результаты в ближайшее время – через 3 дня, а не как положено через 10 дней, то придется еще немало доплатить. Но, несмотря на дороговизну анализа ДНК, он проводится только в проверенных высокопрофессиональных медицинских учреждениях при помощи дорогостоящего лабораторного оборудования.

Минимальная мышь

Существует точка зрения, что бОльшая часть генома человека нефункциональна. В 2004 году журнал Nature опубликовал статью, описывавшую мышей, из генома которых были вырезаны значительные фрагменты некодирующей ДНК размером в 0,8 и даже 1,5 млн нуклеотидов. Было показано, что эти мыши не отличаются от обычных строением тела, развитием, продолжительностью жизни или способностью оставлять потомство. Разумеется, какие-то отличия могли остаться незамеченными, но в целом это был серьезный аргумент в пользу существования «мусорной ДНК», от которой можно избавиться без особых последствий. Конечно, было бы интересно вырезать не пару миллионов нуклеотидов, а миллиард, оставив только предсказанные последовательности генов и известные функциональные элементы. Удастся ли вывести подобную «минимальную мышь», и сможет ли она нормально существовать? Может ли человек обойтись геномом длиной лишь в полметра? Возможно, когда-нибудь мы об этом узнаем. Тем временем еще один важный аргумент в пользу существования мусорной ДНК — наличие достаточно близких организмов с очень разными размерами геномов. Геном рыбы фугу примерно в восемь раз меньше, чем геном человека (хотя генов в нем примерно столько же), и в 330 раз меньше, чем геном уже упомянутой рыбы протоптер. Если бы каждый нуклеотид в геноме был функционален, то непонятно, зачем луку геном в пять раз больший, чем у нас?

На колоссальные различия в размерах геномов сходных организмов обратил внимание эволюционный биолог Сусуму Оно. Считается, что именно Оно ввел термин «мусорная ДНК» (junk DNA)

Еще в 1972 году, задолго до того, как был прочитан геном человека, Оно высказал правдоподобные представления как о количестве генов в геноме человека, так и о количестве «мусора» в нем. В своей статье «Столько мусорной ДНК в нашем геноме» он отмечает, что в геноме человека должно быть около 30000 генов. Это число, на тот момент совсем не очевидное, оказалось удивительно близко к реальному, которое узнали десятки лет спустя. Кроме того, Оно приводит оценку функциональной доли генома (6%), объявляя более 90% генома человека мусором.

Мимивирус Acanthamoeba polyphaga mimivirus. Самый большой известный геном вируса. Геном: 1 181 404 пар оснований. Генов: 979.

Что для одного — находка, для другого — мусор

Вызов представлению о существовании мусорной ДНК бросил проект ENCODE (Энциклопедия элементов ДНК). Получив многочисленные экспериментальные данные о том, какие части генома человека взаимодействуют с различными белками, участвуют в транскрипции или других биохимических процессах, авторы пришли к выводу, что более 80% генома человека так или иначе функциональны . Разумеется, данный тезис вызывал бурное обсуждение в научном сообществе , .

Одна из наиболее ироничных статей, критичная к данному выводу консорциума ENCODE, называется так: «О бессмертии телевизоров: „функция“ в геноме человека по лишенному эволюции Евангелию от ENCODE» . Статья начинается с эпиграфа, который я утащил в начало текста. Ее авторы профессор Дэн Граур (Dan Graur) и коллеги отмечают, что отдельные члены консорциума ENCODE расходятся в том, какая часть генома функциональна. Так, один из них впоследствии уточнил, что речь идет не о 80% функциональных последовательностей в геноме, а о 40% , а другой и вовсе снизил показатель до 20% , но при этом продолжал настаивать, что термин «мусорная ДНК» нужно «устранить из лексикона». Над этим подшутили, что была изобретена новая арифметика, согласно которой 20% больше, чем 80% .

Возникает проблема и с приписыванием функции участкам ДНК. Предположим, что некоторый участок ДНК связывает важный белок, и поэтому ENCODE приписывает этому участку «функцию». Известно, что некоторый белок (транскрипционный фактор) связывается со следующей последовательностью нуклеотидов: TATAAA. Рассмотрим две идентичные последовательности TATAAA в разных частях генома

После того как транскрипционный фактор связывается с первой последовательностью, начинается синтез молекулы РНК, служащей матрицей для синтеза некоторого важного белка. Мутации в этой последовательности приведут к тому, что РНК будет считываться плохо, белок не будет синтезирован, и это, скорее всего, негативно скажется на выживании организма

Поэтому такая последовательность TATAAA будет поддерживаться в геноме с помощью естественного отбора, и в этом случае уместно говорить о наличии у нее функции. Вторая последовательность TATAAA возникла в геноме по случайным причинам. Поскольку она идентична первой, с ней тоже связывается транскрипционный фактор. Но никакого гена рядом нет, поэтому связывание ни к чему не приводит. Если в этом участке возникнет мутация, ничего не изменится, организм не пострадает. В данном случае говорить о функции TATAAA участка нет смысла. Впрочем, может оказаться, что наличие в геноме большого количества последовательностей TATAAA вдали от генов нужно просто для того, чтобы связывать транскрипционный фактор и уменьшать его эффективную концентрацию. В таком случае под отбором будет находиться число таких последовательностей в геноме.

Чтобы доказать, что некоторый участок ДНК функционален, недостаточно показать, что в этом участке происходит некий биологический процесс (например, связывание ДНК). Члены консорциума ENCODE пишут, что функцией обладают участки ДНК, которые вовлечены в транскрипцию

«Но почему нужно акцентировать внимание на том, что 74,7% генома транскрибируется, в то время как можно сказать, что 100% генома принимает участие в воспроизводимом биохимическом процессе — репликации!», — снова шутят Граур и коллеги

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector