Некоторые люди могут слышать магнитное поле земли

«Синдром дефицита магнитного поля»

Доктор биологических наук Петр Василик обнаружил, что в периоды усиления магнитного поля Земли рост человека замедлялся, но сейчас человечество переживает период спада активности магнитного поля планеты и, соответственно, этим Василик объясняет наблюдаемую сегодня акселерацию.

А по мнению японского ученого и врача Киочи Накагавы, слабеющая геомагнитная активность является причиной многих расстройств: плохого сна, потери аппетита, снижения иммунитета, склонности к частым заболеваниям, болезням суставов, кожи, мочеполовой системы, нервозности и общей слабости.

Теория Накагавы получила название «Синдром дефицита магнитного поля».

Впрочем, дефицит магнитного поля может быть вызван искусственно. Например, в космическом корабле или в подводной лодке создается эффект экранирования магнитного поля. У людей, попавших в такие условия на длительное время обнаруживались значительные нарушения функциональных показателей, наблюдалось снижение обмена веществ и уменьшение общего количества лейкоцитов в крови, а также появлялись предвестники различных заболеваний.

Воздействие ЭМП на здоровье человека

Воздействие электромагнитных полей на организм человека связано с поляризацией молекул (например, воды), из которых состоит человеческое тело. При этом они ориентируются по силовым линиям ЭМП. В результате нормальное протекание физико-химических процессов и прохождение нервных импульсов нарушается. Излучение переменного характера приводит также к нагреву тканей человеческого тела.

Но рассмотренные явления в организме возникают только при определенной величине напряженности полей и через некоторое время после начала их действия. Важным фактором также является индивидуальная чувствительность каждого человека, позволяющая переносить негативное воздействие по-разному. Особенно восприимчивы к изменению электромагнитного фона дети со стариками, лица со слабым здоровьем.

Если нормы напряженности поля (при определенной частоте) превышены, то механизм поляризации в первую очередь влияет на органы, содержащие наибольший процент воды. Перегрев же опасен всем живым тканям. Поэтому действие ЭМП сказывается в той или иной степени на всех системах организма:

Если нервная система сильно поражается, то возникают бредовые идеи, галлюцинации, падают адаптивные возможности личности. На органическом уровне изменения могут привести к онкологическим заболеваниям, например, раку мозга.

Из-за тотальной электризации произошел рост негативного воздействия полей электромагнитной природы на людей. В медицине появился специальный термин «радиоволновая болезнь». Специалисты считают, что симптомами этого недуга затронута уже треть населения развитых стран. Но по причине общности признаков с другими заболеваниями, диагностика радиоволновой болезни затруднена.

Существующие нормы излучения, их контроль

Электромагнитные поля и их влияние на организм человека изучает целое направление – электромагнитная безопасность. Во время исследований были установлены предельно-допустимые величины излучения (в разных диапазонах частот), превышение которых вызывает ухудшение здоровья людей, указывая на необходимость проведения защитных мероприятий.

Все излучение по частоте делится на диапазоны, представленные в таблице ниже. А также в ней содержатся максимально допустимые величины напряженности поля, неопасные для человека.

Группа излучения Подгруппа Максимально допустимая напряженность поля
низкочастотное 0,03-30000 Гц более 25 В/м
высокочастотное (диапазон составляет от 30 кГц до 300 МГц) от 30 до 300 кГц 25 В/м
от 0,3 до 3 МГц 15 в/м
3-30 МГц 10 В/м
от 30 до 300 МГц 3 В/м
сверхвысокочастотное 300 МГц-300ГГц 10 мкВт/см2

Мобильная связь, телевидение и радиовещание работают в сверхвысокочастотном диапазоне.

На территории России предельные уровни напряженности ЭМП регламентируются санитарно-гигиеническими нормами и правилами. Контрольные функции выполняют представители санитарного надзора, а на предприятиях еще и специалисты охраны труда.

Максимальная доза электромагнитного излучения, которую способен перенести человек без вреда для здоровья составляет по нормативам 0,2 мкТл.

Магнитотерапия

Неустойчивое магнитное поле нарушает кровоснабжение, тем самым срывает полноценные поставки кислорода и других веществ к различным органам. Наносится такой же вред, как при нехватке витаминов и минералов в организме. Повышается проницаемость сосудов. В результате рассасываются отёки, и быстрее растворяются лекарства. Это свойство магнитных полей используется в магнитотерапии, для лечения переломов и других травм.

Существование метеочувствительности доказано научными исследованиями. Но неуверенные, скептически настроенные люди часто слишком большое значение придают словам диктора по телевизору о вспышках на солнце. Они находят у себя болезни, которых нет, это издержки нерегулируемого потока информации.

Совсем скрыться от геомагнитных бурь невозможно, но есть методы, позволяющие снизить риск негативных последствий в этот период.

Действия по снижению отрицательного влияния геомагнитных бурь

– следить за прогнозами синоптиков, они постоянно предупреждают о приближении солнечных вспышек;

– проснувшись утром, не вскакивать резко с кровати. Чтобы не вызвать резкий скачок давления;

– воздержаться от приёма алкоголя;

– временно снизить физические нагрузки;

– возмущённое магнитное поле увеличивает уровень холестерина, поэтому нужно воздержаться от чрезмерного переедания;

– из продуктов рекомендованы: каши, отварная рыба, овощи, ржаной хлеб и фрукты;

– сердечникам иметь при себе лекарства;

– также полезны компрессы из эвкалиптового масла;

– полезен контрастный душ в течении не менее 20 мин;

– употреблять больше жидкости.

На сегодняшний день учёные не придумали, как усилить защиту магнитного поля Земли, тем самым оградить его от солнечных вспышек. Но исследования в этой области активно продолжаются.

Геомагнитные бури не всегда наносят вред здоровью, в большинстве случаев мы не замечаем их наступления. Человек волен сам выбирать, заботиться о своём теле: вести здоровый образ жизни, не есть лишнего, умственно работать, или лежать на диване и думать о своих болезнях. Всё в наших руках. Здоровья Вам.

«Синдром дефицита магнитного поля»

Доктор биологических наук Петр Василик обнаружил, что в периоды усиления магнитного поля Земли рост человека замедлялся, но сейчас человечество переживает период спада активности магнитного поля планеты и, соответственно, этим Василик объясняет наблюдаемую сегодня акселерацию.

А по мнению японского ученого и врача Киочи Накагавы, слабеющая геомагнитная активность является причиной многих расстройств: плохого сна, потери аппетита, снижения иммунитета, склонности к частым заболеваниям, болезням суставов, кожи, мочеполовой системы, нервозности и общей слабости.

Теория Накагавы получила название «Синдром дефицита магнитного поля». Впрочем, дефицит магнитного поля может быть вызван искусственно. Например, в космическом корабле или в подводной лодке создается эффект экранирования магнитного поля. У людей, попавших в такие условия на длительное время обнаруживались значительные нарушения функциональных показателей, наблюдалось снижение обмена веществ и уменьшение общего количества лейкоцитов в крови, а также появлялись предвестники различных заболеваний.

1

Wow

Heart

Haha

Love

Yay

Sad

Poop

Angry

Навигатор в клюве

«Хотя уже ясно, что животные используют чувствительность к магнитному полю Земли для навигации в пространстве, механизм этой способности остается неясен. Используют ли они свои глаза или уши? Магнитное поле нашей планеты легко проходит сквозь тела животных, так что «сенсор» может оказаться даже глубоко внутри мозга», — рассказал профессор Пирс-Шимомура.

Две гипотезы, выработанные в результате многочисленных экспериментов, считают основными. Первая — наличие в некоторых частях организма магнетитов (Fe3O4), — оксидов железа, наиболее сильных магнитов среди всех когда-либо обнаруженных на Земле природных минералов. Предполагается, что при контакте с магнитным полем Земли этот минерал намагничивается, в процессе передавая понятный мозгу животного сигнал.

В конце XX века магнетиты были обнаружены в клювах некоторых птиц, включая голубей. Ученые предположили, что эти минералы и ответственны за работу «внутреннего компаса». Но исследования в начале XXI века многих заставили разочароваться в этой идее. В частности, в 2005 году появилась работа, в рамках которой было показано, что магнетиты в клювах голубей не реагируют на магнитное поле Земли. А в 2012 году группе ученых из Университетского колледжа Лондона удалось продемонстрировать, что те самые клетки с магнетитами, которые ранее обнаружили в клювах голубей, являются на самом деле макрофагами, неспособными к передаче электрического сигнала. Открытие автоматически лишило эти клетки ответственности за магниторецепцию, заметно навредив имиджу «магнетитной» гипотезы.

Вторая гипотеза, которая набрала популярность уже в 2000-е годы, основывается на исследованиях светочувствительного (к синей части спектра) белка криптохрома, расположенного в сетчатке глаза. Криптохром участвует в регуляции суточных, или циркадных, ритмов у животных и растений. Причем существует два типа этого белка: первый встречается исключительно у беспозвоночных и регулирует суточные ритмы светозависимым способом; криптохром второго типа характерен также для позвоночных и, скорее всего, регулирует суточные ритмы независимо от света.

Согласно результатам экспериментов, проведенных с целью выяснить роль криптохрома в механизме магниторецепции, оба типа белка, возможно, могут участвовать в формировании «магнитного чувства». Одно из наиболее известных и наглядных исследований в этой области было проведено в 2008 году группой из Массачусетского университета. Мушки дрозофилы были помещены в специальный освещенный лабиринт, где их приучили питаться вблизи источника электромагнитного поля. В ходе опыта мушки не смогли найти путь к своей кормушке после того, как ученые «выключили» их криптохром путем блокировки синего участка и ультрафиолета в спектре освещения лабиринта. При «включении» криптохрома насекомые вновь смогли с легкостью найти кормушку-магнит.

Эти результаты позволили ученым предположить, что криптохром все же играет определенную роль в формировании у животных «магнитного чувства». Физиологически за выполнение такой функции могут отвечать особые химические реакции, называемые реакциями пар радикалов: под воздействием света определенной длины волны две части одной молекулы (или просто близко расположенные молекулы) могут запустить каскадную реакцию, которая трансформируется в сигнал для содержащей эту молекулу клетки. Клетка, в свою очередь, оказывается способна передать этот сигнал мозгу. Именно такой механизм, возможно, лежит в основе участия криптохрома в процессе магниторецепции.

Могут ли люди и животные чувствовать магнитное поле планеты?

Магниторецепция — уникальное свойство некоторых живых организмов планеты, позволяющее им эффективно применять навигацию при перемещении, выборе необходимого направления движения и даже определении местоположения на местности. Когда-то давно ученые считали, что магниторецепция животных в принципе невозможна, однако открытие подобного умения у птиц заставило ученых задаться вопросом о наличии аналогичного навыка и у человека.

Способность чувствовать магнитное поле Земли есть у голубей. При помощи нее они могут проложить маршрут до нужного им места

Хотя предыдущие исследования не обнаружили у представителей Homo Sapiens каких-либо экстраординарных способностей, ученые решили не сдаваться, построив специально оборудованную клетку Фарадея с датчиками для электроэнцефалографии, куда в дальнейшем были помещены несколько испытуемых добровольцев. Внутри конструкции клетки исследователи расположили катушки, которые при активном движении генерировали магнитное поле.

Во время проведения активной фазы эксперимента, испытуемые находились в темной, тихой обстановке с закрытыми глазами. После включения прибора, генерирующего магнитные волны, мозговые данные участников непрерывно фиксировались учеными, которые вели запись исследования для последующего анализа.

Клетка Фарадея для изучения влияния магнитного поля на человека

Результаты эксперимента показали, что человеческий мозг действительно собирает и избирательно обрабатывает направленную информацию от рецепторов магнитного поля. По словам специалистов, такая нейронная активность является необходимой предпосылкой для любого поведенческого выражения магниторецепции. Иными словами, человек действительно может ощущать магнитное поле, как и его соседи по планете — птицы и животные.

В своем отчете ученые поясняют, что известные магниторецептивные животные испытывают это чувство как прямой биологический сигнал, который используется для миграции у птиц или для оценки безопасности водных путей у черепах. Кроме того, подобная система навигации позволяет живым существам различать магнитное поле от локальных излучений. Так, вам может быть известно, что относительно крупные вулканы могут генерировать локализованные магнитные поля, и, животное, движущееся через магнитные объекты такого рода, получает серию предупреждающих сигналов против использования магнитного поля для дальней навигации.

Способность чувствовать магнитное поле могла достаться нам от наших предков

Та же самая закономерность была обнаружена и у людей, участвовавших в проведении эксперимента. Это может означать, что способность некоторых людей ощущать изменения магнитного поля была унаследована ими от далеких предков — охотников-собирателей, которым уникальная особенность могла быть едва ли не жизненно необходима. Хотя подтверждение необычной гипотезы все еще нуждается в дальнейших экспериментах, исследователи уверены, что способность чувствовать магнитное поле в свое время помогла человеку успешно заселить нашу планету.

Hi-News.ru уже писал ранее о том, что будет, если столь важное для человека магнитное поле нашей планеты неожиданно исчезнет. О том, какие последствия будут нас ожидать в этом случае, вы можете прочитать в данной статье

Неблагоприятные дни

Ученые могут прогнозировать неблагоприятные дни для метеопатов и метеоневротиков с высокой степенью точности. При этом прогноз на июль 2020 года известен еще в начале года. Данные могут быть скорректированы, если астрономы обнаружат усиление солнечной активности или неожиданные космические явления.

Пока на второй месяц лета нет особенных оснований для тревоги, так как не предполагаются очень сильные магнитные бури.

Таблица, приведенная ниже, содержит данные о неблагоприятных днях в июле 2020 года для метеочувствительных людей:

Степень интенсивности Дата прохождения Кому нужно поостеречься
Средняя 7 июля Людям с хроническими заболеваниями ССС, ЦНС, пожилого возраста.
Сильная 15 июля Всем, кто отмечает взаимосвязь негативного самочувствия и погодных условий, вне зависимости от возраста.
Средняя 29 июля Гипертоникам и гипотоникам, склонным к мигреням и цефалгии, пациентам с ослабленным иммунитетом или хроническими воспалениями.

А вы метеочувствительный человек?
Да, чувствую любую перемену в погоде. Спасают только таблетки. 78.69%

Только при сильных магнитных бурях. 18.91%

Нет. 2.4%
Проголосовало: 915

Магнитное поле Земли слабеет

Магнитное поле Земли представляет из себя настоящую защиту планетарного масштаба, которая надежно оберегает нас от вредного солнечного излучения. Несмотря на это, недавние исследования ученых зафиксировали его существенное ослабление, вызванное неизвестными причинами. Исследователями был также обнаружен возможный источник возникновения данной проблемы, которой стала так называемая Южно-атлантическая аномалия. В этой области планеты солнечные частицы опускаются ближе к Земле, чем обычно, что никак не увязывается со стандартными законами физики.

Важно понимать, что даже если магнитное поле постепенно ослабевает, оно не исчезнет навсегда из-за оказываемого влияния расплавленного внешнего ядра Земли, которое состоит преимущественно из никеля и железа. Ученые считают, что внешнее ядро двигается за счет конвекции тепла, которое выделяется по мере роста и затвердевания центра планеты

Такой двигатель с магнитным полем известен нам как динамо-механизм и работает уже миллиарды лет. Ученые предполагают, что нынешняя структура ядра установилась около 1,5 миллиардов лет назад, однако геофизик Джон Тардуно и его команда нашли доказательства существования магнитного поля на Земле в древнейших минералах планеты, так называемых цирконах, которые появились 4,2 миллиарда лет назад. Данная находка позволяет предположить, что активность в ядре планеты создавала магнетизм в течение очень долгого времени.

Магнитное поле защищает человека от вредного солнечного излучения уже на протяжении 4,2 миллиарда лет

Ученые предполагают, что изменение мантии под Южной Африкой могло вызвать инверсию магнитного поля. По результатам исследования, к 2019 году полюс сместился более чем на 2300 км, по сравнению с измерениями 1831 года. Помимо смещения магнитного полюса, увеличивается и скорость перемещения: с 15 км до 55 км в год. Такое быстрое движение вынуждает нас чаще корректировать навигационные системы, например, компасы в смартфонах или системы навигации самолетов и кораблей. Но даже в том случае, если магнитное поле готовится к глобальному перевороту, оно не исчезнет полностью, а лишь значительно ослабнет.

Несмотря на то, что ослабление магнитного поля повлечет за собой мощную бомбардировку земной атмосферы солнечными заряженными частицами, ощутить на себе их вредное воздействие мы попросту не успеем. Так, в первую очередь, нас чаще будут подводить компасы, которые перестанут выполнять свою функцию и будут показывать на область самого высокого магнитного поля, которое может оказаться совсем рядом с нами. Северное и южное сияние было бы видно из более низких широт, ведь их возникновение происходит в результате взаимодействия заряженных солнечных частиц и магнитосферы Земли.

Более слабое поле позволит заряженным солнечным частицам проникать в атмосферу Земли, освещая небо ближе к экватору

Влияние южно-атлантической аномалии на спутники может распространиться по всей Земле, что приведет к техническим сбоям планетарного масштаба. В момент взаимодействии ионосферы и солнечных частиц, последние также выделяют электроны из своих молекулярных орбит. Новообразованные электроны оказывают негативное влияние при передаче высокочастотных радиоволн, которые в настоящее время используются для связи.

Вместе с тем, исследователи точно не знают, сколько же именно времени может потребоваться для полного разрушения магнитного поля планеты. Аналогичный процесс однажды происходил на Марсе, который приблизительно 4 миллиарда лет назад столкнулся с массивным космическим телом и потерял возможность вырабатывать собственное магнитное поле и, как следствие, большую часть атмосферы. Пример Марса может показать нам процессы, которые испытывает на себе планета при постепенном разрушении на ней магнитного поля. Так, долговременное воздействие солнечного излучения и земной атмосферы может постепенно разрушить нашу основную защиту — озоновый слой. Существенное нарушение внутри этого слоя способно значительно повысить уровень воздействия ультрафиолетового излучения на человека, что повлечет за собой увеличение риска возникновения рака кожи.

Магнитное поле проводника с током

В проводнике с током каждый движущийся электрон создает вокруг себя магнитную «оболочечную» систему. Поскольку эти оболочки расположены близко друг к другу, проводник окружен цилиндрическим полем B. Поверхности с постоянным значением B образуют систему, которая больше не требует оболочек, а только коаксиальных цилиндров.

Направления тока I и вектора B, который генерирует этот ток, соответствуют правилу правой руки: большой палец указывает направление тока, а оставшиеся пальцы показывают, как поле B окружает направляющую

Если проводник с током I делится на бесконечно короткие отрезки длиной d 1 , то в каждом из них заряд dq будет двигаться, а на расстоянии r, магнитное поле этого отрезка тока d, B будет

Как измерить магнитное поле

В связи с тем, что магнитное поле является векторным полем, для того, чтобы полностью его описать, вам нужны как его интенсивность, так и направление. Направление поля относительно легко определить. Просто используйте компас — его стрелка установится в направлении магнитного поля Земли. Магнитные компасы известны и используются в навигации (с использованием магнитного поля Земли) с 11-го века. Измерение значений поля немного сложнее. Первые магнитометры появились только в 19 веке. Большинство из них были основаны на наблюдении за поведением электрона, помещенного в магнитное поле. Точные измерения слабых магнитных полей стали возможными только в 1988 году с открытием явления гигантского магнитосопротивления, которое наблюдалось в некоторых материалах со слоистой структурой. Это явление быстро нашло применение при конструировании жестких дисков, на которых сохраняются данные с компьютеров. Результат был значительным — емкость дисков увеличилась на целые порядки всего за несколько лет с момента появления новой технологии (примерно с 0,01 до 10 GB / см^2 ). Если вы хотите описать магнитное поле количественно (то есть, скажем, насколько оно сильное), мы должны указать, говорим ли мы о магнитной индукции В или о напряженности магнитного поля H. В системе СИ единицей магнитной индукции является тесла (символ T в честь Николы Теслы ). Значение магнитной индукции в теслах определяется величиной силы, которая будет влиять на нагрузку, движущуюся в исследуемом поле. Значение индукции магнитного поля, создаваемой средними магнитами на холодильник, составляет ~ 0,001 Т и магнитная индукция земного поля  5 * 10–5  Т. Другая, иногда используемая, единица — Гаусс (символ G). Преобразование единицы очень просто: 1 T = 10^4 G. На практике Гаусс часто используется, потому что поле магнитной индукции, равное 1 тесле, уже очень велико, и мы редко имеем дело с этим порядком величины. Альтернатива магнитной индукции В величина напряженности магнитного поля H. Оба, как векторы, направлены вдоль силовых линий, принимая другие значения внутри магнитных материалов. В некоторых сложных случаях величина H это полезно, но для наших целей B будет вполне достаточно.

Применение постоянных магнитов

Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками

В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:

  • «Nd» – ниодия,
  • «Fe» – железа,
  • «B» – бора.

Сферы, где применяют постоянные магниты:

  1. Экология;
  2. Гальваника;
  3. Медицина;
  4. Транспорт;
  5. Компьютерные технологии;
  6. Бытовые приспособления;
  7. Электротехника.

Экология

Разработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы.

Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.

Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.

Гальваника

Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.

Медицина

В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.

Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.

Транспорт

Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.

Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье. Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ

Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое

Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.

Компьютерные технологии

Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.

Бытовые приспособления

В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.

Электротехника

Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.

Генераторы

Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.

Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.

Ротор и статор генератора

Электродвигатели

В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.

Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.

Электродвигатель с постоянными магнитами

Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.

Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector