Термоядерный синтез

Международные конференции по ХЯС

Конференции International Conference on Cold Fusion (англ.) (ICCF) проводятся с 1990 года в США, Японии и России.
С 2007 используют название «International Conference on Condensed Matter Nuclear Science».
Ранние мероприятия часто критиковались за привлечение псевдоучёных.

  1. ICCF-1 Солт-Лейк-Сити, США 1990
  2. ICCF-2 Комо, Япония 1991
  3. ICCF-3 Нагоя, Япония 1992
  4. ICCF-4 Гавайи, США 1993
  5. ICCF-5 Монте Карло, Монако 1995
  6. ICCF-6 Саппоро, Япония 1996
  7. ICCF-7 Ванкувер, Канада 1998
  8. ICCF-8 Леричи, Италия 2000
  9. ICCF-9 Пекин, КНР 2002
  10. ICCF-10 Кембридж, США 2003
  11. ICCF-11 Марсель, Франция 2004
  12. ICCF-12 Иокогама, Япония 2005
  13. ICCF-13 Дагомыс, Россия 2007
  14. ICCF-14 Вашингтон, США 2008
  15. ICCF-15 Рим, Италия 2009
  16. ICCF-16 Ченнай, Индия 2011
  17. ICCF-17 Тэджон, Южная Корея 2012
  18. ICCF-17 2012 KAIST ** Daejeon, South Korea Sunwon Park, Frank Gordon
  19. ICCF-18 2013 University of Missouri ** Columbia, Missouri, U.S. Robert Duncan, Yeong Kim
  20. ICCF-19 2015 TSEM ** Padua, Italy Antonio La Gatta, Michael McKubre, Vittorio Violante
  21. ICCF-20 2016 Tohoku University ** Sendai, Miyagi, Japan Jiro Kasagi, Yasuhiro Iwamura
  22. ICCF-21 2018 LENRIA ** Fort Collins, CO, U.S. Steven Katinsky, David Nagel

Схватка жизни с радиацией

Более сорока лет назад существовала секретная организация «Красная звезда», руководил которой И. С. Филимоненко. Он со своей группой проводил разработки комплекса жизненного обеспечения для полетов на Марс. Он разработал термоядерный синтез (холодный) для своей установки. Последняя, в свою очередь, должна была стать двигателем для космических кораблей. Но когда был верифицирован реактор холодного термоядерного синтеза, стало понятно, что он может помочь и на Земле. С помощью этого открытия можно обезвреживать изотопы и избежать ядерного взрыва.

Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Кризис на Карибах показывает, что СССР и Америка готовы были ввязаться в ядерную войну. Но их сдерживало то, что отсутствовала подобная установка, которая бы смогла защитить от воздействия радиации.

На то время прочно был связан с фамилией Филимоненко холодный термоядерный синтез. Реактор вырабатывал чистую энергию, что позволило бы защитить партийную верхушку от радиационного заражения. Отказавшись предоставить в руки власти свои разработки, ученый не дал руководству страны «козыря», в случае если бы началась ядерная война. Без его установки подземные бункеры защитили бы высших партийных деятелей от ядерного удара, но рано или поздно их бы достала радиация. Таким образом, Иван Степанович защитил мир от глобальной ядерной войны.

XM29 OICW

Футуристическая винтовка, так и не вышедшая в серию. /Фото: wikiрedia.org

В девяностых годах прошлого века две компании — американской Alliant Techsystems и немецкой Heckler & Koch — начали разработку совместной программы по созданию принципиально нового вида оружия, построенного по модульной схеме: в результате должна была получиться наполовину винтовка со стандартными пулями 5.56 мм, наполовину гранатомёт калибра 20 мм с боезапасом осколочного боеприпаса дистанционного (воздушного) подрыва.

Примерно в 1999 году необычный концепт обрел материальную форму в виде модели XM29 OICW. При многообещающих технических характеристиках внешний вид оружия оказался соответствующим — неоднократно отмечалось, что оно похоже на футуристическую «пушку» из видеоигр. Однако на деле концепт не оправдал ожидания заказчиков, оказавшись малоэффективным: неудовлетворительное поражающее действие гранаты, а также «неприемлемая масса» самого оружия поставило точку в его дальнейшей разработке, и проект был закрыт в 2004 году.

[править] Почему не получается?

Чтобы произошла реакция синтеза, два ядра должны сблизиться на очень близкое расстояние. Но ядра имеют положительный заряд, а потому отталкиваются друг от друга. Чтобы их сблизить друг с другом, их нужно разогнать до огромных скоростей. Одним из основных вариантов такого разгона является нагрев до высокой температуры. Расчет показывает, что нужна температура порядка 10^9 Кельвин. Но за счет так называемого «максвелловского хвоста» синтез зажигается уже при 10^7. Популярно это можно объяснить следующим образом, при заданной температуре частицы газа движутся с различными скоростями, определяемыми (в дорелятивистской области) распределением Максвелла. Поэтому уже при температуре 10^7К найдутся такие частицы, скоростей которых достаточно для преодоления кулоновского отталкивания и слияния двух ядер в одно. Но при таких температурах вещество становится плазмой и очень интенсивно излучает энергию, то есть быстро остывает.

ВНЕЗАПНО оказалось, что реальные потери энергии куда больше, чем показывали первые теоретические расчёты, и вообще плазма ведёт себя крайне невоспитанно, не слушается учёных, так что достаточное количество топлива прореагировать не успевает. Уменьшить же потери или увеличить скорость реакции оказалось не так-то просто. Причём зачастую требования друг другу противоречат: чтобы за то же время прореагировало больше топлива его концентрацию нужно повышать, но при повышении концентрации возрастают потери энергии, а оттого время уменьшается.

Справедливости ради стоит отметить, что бабло эти полвека тратилось не только впустую. Современные реакторы лишь в разы хуже того, что нам нужно, а ещё несколько десятков лет назад отставание было на порядки. Так что, если финансирование не прекратится, термоядерные электростанции всё-таки построены будут. Лет через пятьдесят.

Автомобиль-вертолёт

Один из проектов летающего автомобиля. /Фото: reddit.com

И до Второй мировой войны, и во время нее инженеры пытались создать такое оружие или военную технику, чьи способности и характеристики кажутся впечатляющими даже сейчас. Одним из таких откровенно странных проектов можно смело назвать разработку нового летательного аппарата в виде гибрида вертолета и автомобиля.

Подобную машину решили спроектировать военные инженеры британской армии. В конечном итоге у них получился агрегат, который представлял собой внедорожник, оснащенный хвостом и несущим винтом от вертолёта. Поразительно, но эта машина действительно неплохо летала. Однако крест на развитии необычного концепта поставила банальная практичность: быстро стало ясно, что транспортировка наземной техники осуществляется немного проще посредством самолётов, нежели путем создания десятков и сотен гибридов.

Гипотеза Авраменко

Этот ученый-уфолог посвятил свою жизнь изучению плазмы. Авраменко Римлий Федорович хотел создать плазменный генератор в качестве альтернативы современным источникам энергии. В 1991 году в лаборатории он проводил опыты по образованию шаровой молнии. А плазма, которая из нее выстреливалась, расходовала энергии намного больше. Ученый предлагал этот плазмоид использовать для обороны против ракет.

Испытания были проведены на военном полигоне. Действие такого плазмоида могло бы помочь при борьбе с астероидами, которые грозят катастрофой. Разработка Авраменко также не получила продолжения, а почему – никто не знает.

Возможно или невозможно?

С того времени произошло четкое разделение всего научного сообщества на два лагеря. Сторонники одного убеждали всех, что холодный термояд – это выдумка, которая ни на чем не основана. Другие же, напротив, до сих пор уверены, что холодный ядерный синтез возможен, что злополучные химики все же совершили открытие, которое в конце концов может спасти все человечество, дав ему неисчерпаемый источник энергии.

Тот факт, что если все же произойдет изобретение нового метода, с помощью которого будут возможны холодные ядерные реакции синтеза, и, соответственно, значение такого открытия будет неоценимо для всех людей в глобальном масштабе, привлекает к этому научному направлению все новых и новых ученых, часть из которых в действительности могут считаться мошенниками. Целые государства прилагают значительные усилия по постройке всего лишь одной термоядерной станции, затрачивая при этом огромные суммы денежных средств, а холодный термояд способен извлекать энергию абсолютно простыми и довольно недорогими способами. Именно это и привлекает желающих нажиться обманным путем, а также и других лиц, имеющих психические расстройства. Среди приверженцев этого способа получения энергии можно отыскать и тех и других.

История с холодным термоядом просто обязана была попасть в архив так называемых лженаучных историй. Если посмотреть на метод, с помощью которого получается энергия ядерного синтеза, трезвым взглядом, то можно понять, что для соединения двух атомов в один требуется огромное количество энергии. Она необходима для преодоления электрического сопротивления. В строящемся на данный момент Международном термоядерном реакторе, который будет располагаться в г. Карадаш во Франции, планируется проводить соединение двух атомов, которые являются наилегчайшими из существующих в природе. В результате такого соединения ожидается положительный выброс энергии. Эти два атома – тритий и дейтерий. Они являются изотопами водорода, поэтому ядерный синтез водорода будет основой. Чтобы осуществить подобное соединение, необходима немыслимая температура – сотни миллионов градусов. Конечно же, для этого понадобится и огромное давление. По этой причине многие ученые и считают, что холодный управляемый ядерный синтез невозможен.

Почему учёные не занимаются исследованиями в этом направлении?

Учёные занимаются исследованиями в том направлении, на которое выделятся средства.

Например, миллионы долларов выделяются каждый год на разработку новых препаратов для лечения рака. Но, средства выделяют крупные фармацевтические компании, которым нужно сбывать лекарства больным раком, а не излечивать пациентов, тем самым разрушая свой хорошо отлаженный бизнес.

То же самое случилось и с генераторами, работающими на нетрадиционных видах топлива. И в самом деле, на научные исследования в области термоядерного синтеза (Токамак, Лазерный термоядерный синтез) выделяются огромные суммы, на которые кормятся тысячи учёных. Уже полвека идут эксперименты, а воз и ныне там. То ли учёные принципиально не хотят менять доктрину, то ли терпеливо ждут, пока закончится нефть…

Так вот, некоторые весьма полезные для общества технологии могут оказаться вредными не только для крупного капитала, но и для всей мировой экономической системы. Ведь ни для кого не секрет, что экономика некоторых стран целиком зависит от добычи углеводородного сырья.

Так что, только революция в энергетике, которая состоится в отдалённом будущем, сможет что-то кардинально изменить в этом замкнутом круге.

[править] Гибридный термоядерный реактор

Известно, что в термоядерных бомбах часто используют оболочку из обеднённого урана для существенного повышения мощности взрыва: нейтроны D-T реакции обладают столь высокой энергией, что вызывают деление даже «неделящихся» тяжёлых изотопов. Разумеется, быстро возникла идея применить этот же принцип и в мирных реакторах.

Чем это хорошо
  • К созданию гибридной электростанции можно приступать хоть завтра, так как применение обеднённого урана в 5—10 раз повысит энерговыделение;
  • Тысячи тонн обеднённого урана наконец-то найдут себе полезное применение (пока что их тупо пуляют из танковых пушек в виде обычных болванок, в танковую же броню);
  • В интенсивных потоках быстрых нейтронов многие долгоживущие изотопы превращаются в короткоживущие, что позволяет перерабатывать отходы обычных атомных реакторов;
  • В таких реакторах можно производить много чистого и дешёвого урана-238 и плутония-239 для атомных бомб (стоит отметить, что то же самое происходит и в ядерных реакторах на быстрых нейтронах. А ещё тот самый 239Pu скорей всего будут использовать как топливо в реакторах, поскольку реакторы БН умеют делать его из бесполезного урана-238 в огромных количествах (а точнее, с коэффициентом выхода 1,4—1,5)).
Чем это плохо
  • В таком реакторе сотни тонн радиоактивных веществ, а значит можно ожидать море лулзов. Хотя здесь, в отличие от реакторов деления, их можно получить только при мощном внешнем воздействии, неконтролируемое развитие реакции тут невозможно;
  • В таком реакторе не только перерабатываются, но и производятся радиоактивные отходы, которые куда-то нужно девать (впрочем, в основном короткоживущие, в отличие от реакторов деления).

Экспериментальные установки

1957 год был ознаменован тем, что Филимоненко Иван Степанович вывел совершенно другой вариант создания энергии при помощи ядерного синтеза из дейтерия гелия. А уже в июле шестьдесят второго года он запатентовал свою работу по процессам и системам термоэмиссии. Основной принцип работы: вид теплого ядерного синтеза, где температурный режим составляет 1000 градусов. Для внедрения этого патента в жизнь было выделено восемьдесят организаций и предприятий. Когда Курчатов умер, разработку стали прижимать, а после смерти Королева совсем прекратили разрабатывать термоядерный синтез (холодный).

В 1968-ом все работы Филимоненко остановили, так как он проводил с 1958 года исследования по определению радиационной опасности на АЭС и ТЭС, а также испытания ядерного оружия. Его доклад на сорок шесть страниц помог остановить программу, которая предлагалась для запуска на Юпитер и Луну ракеты с ядерной установкой. Ведь при любой аварии или по возвращении космического корабля мог произойти взрыв. Он бы имел мощность в шестьсот раз больше, чем в Хиросиме.

Экспериментальные подробности

Некоторые опыты по «холодному ядерному синтезу» включали в себя:

  • «катализатор», такой как никель или палладий, в виде тонких плёнок, порошка или губки;
  • «рабочее тело», содержащее изотопы водорода: тритий, дейтерий или протий;
  • систему «возбуждения» ядерных превращений изотопов водорода «накачкой» «рабочего тела» энергией — посредством нагревания, механического давления, воздействием лазерных лучей, акустических волн, электромагнитного поля или электрического тока.

Экспериментальная установка камеры холодного синтеза состоит из палладиевых электродов, погружённых в электролит, содержащий тяжёлую или сверхтяжёлую воду. Камеры для электролиза могут быть открытыми или закрытыми. В системах открытых камер газообразные продукты электролиза покидают рабочий объём, что затрудняет калькуляцию баланса между полученной и затраченной энергией. В экспериментах с закрытыми камерами продукты электролиза утилизируются, например, путём каталитической рекомбинации в специальных частях системы. Экспериментаторы, в основном, стремятся обеспечить устойчивое выделение тепла непрерывной подачей электролита. Проводятся также опыты типа «тепло после смерти», в которых избыточное (за счёт предполагаемого ядерного синтеза) выделение энергии контролируется после отключения тока.

E-Cat от Росси

Одна из ярких попыток поставить НЭЯР на коммерческие рельсы была сделана инженером Андреа Росси из компании Leonardo Corp, находящейся в Майами. В 2011 году Росси с коллегами объявили на пресс-конференции в Италии о постройке настольного реактора «Энергетический катализатор» , или E-Cat, производящего избыточную энергию в процессе, где катализатором служит никель. Для обоснования изобретения Росси демонстрировал E-Cat потенциальным инвесторам и СМИ, и назначал независимые проверки.
Росси утверждает, что в его E-Cat происходит самоподдерживающийся процесс, в котором входящий электрический ток запускает синтез водорода и лития в присутствии порошковой смеси никеля, лития и алюмогидрида лития, в результате которого появляется изотоп бериллия. Короткоживущий бериллий распадается на две α-частицы, а избыточная энергия выделяется в виде тепла. Часть никеля превращается в медь. Росси говорит об отсутствии как отходов так и излучения вне аппарата.
Анонс Росси вызвал у учёных то же неприятное чувство, что и холодный синтез. Росси вызывает у многих людей недоверие из-за своего спорного прошлого. В Италии его обвинили в мошенничестве из-за его предыдущих деловых махинаций. Росси говорит, что эти обвинения остались в прошлом и не хочет обсуждать их. Также у него однажды был контракт на создание тепловых установок для ВС США, но поставленные им устройства не работали по спецификациям.
В 2012 году Росси объявил о создании системы мощностью в 1 МВт, пригодной для отопления больших зданий. Также он предполагал, что к 2013 году у него уже будет фабрика, ежегодно производящая миллион установок мощностью в 10 кВт и размером с ноутбук, предназначенных для домашнего использования. Но ни фабрики, ни этих устройств так и не случилось.
В 2014 году Росси продал технологию по лицензии компании Industrial Heat, открытой инвестиционной конторой Cherokee, занимающейся покупкой недвижимости и очищающей старые промзоны для новой застройки. В 2015 году генеральный директор Cherokee, Том Дарден , по образованию юрист и специалист по окружающей среде, назвал Industrial Heat «источником финансирования для изобретателей НЭЯР».
Дарден говорит, что Cherokee запустила Industrial Heat, поскольку в инвестиционной компании верят, что технология НЭЯР достойна исследований. «Мы были готовы ошибаться, мы готовы были вложить время и ресурсы, чтобы узнать, может ли эта область оказаться полезной в нашей миссии по предотвращению загрязнения », говорит он.
А в это время Industrial Heat и Leonardo поругались, и теперь судятся друг с другом по поводу нарушений соглашения. Росси получил бы $100 млн, если бы годовой тест его системы мощностью в 1 МВт оказался успешным. Росси говорит, что тест закончен, но в Industrial Heat так не считают, и опасаются, что устройство не работает.
Нагель говорит, что E-Cat привнёс в область НЭЯР энтузиазм и надежду. В 2012 году он утверждал, что, по его мнению, Росси не был мошенником, «но мне не нравятся некоторые его подходы к тестированию». Нагель считал, что Росси должен был действовать более аккуратно и прозрачно. Но в то время Нагель сам считал, что устройства на принципе НЭЯР появятся в продаже к 2013 году.
Росси продолжает исследования и объявил о разработках других прототипов. Но он мало что рассказывает о своей работе. Он говорит, что устройства мощностью в 1 МВт уже находятся в производстве, и он получил «необходимые сертификаты» для их продажи. Домашние устройства, по его словам, пока ещё ожидают сертификации.
Нагель говорит, что после спада радостного настроения, связанного с объявлениями России, к НЭЯР вернулся статус-кво. Доступность коммерческих генераторов НЭЯР отодвинулась на несколько лет. И даже если устройство выдержит проблемы воспроизводимости и будет полезным, его разработчикам предстоит жестокая битва с регуляторами и принятием его пользователями.
Но он сохраняет оптимизм. «НЭЯР могут стать коммерчески доступными ещё до их полного понимания, как было с рентгеном», говорит он. Он уже оборудовал лабораторию в Университете им. Джорджа Вашингтона для новых экспериментов с никелем и водородом.
 

Другие эксперименты

США, 2002

8 марта 2002 года в солидном международном научном журнале «Сайенс» появилось сообщение о наблюдении «явлений, не противоречащих возможности» ХЯС. Русско-американская группа исследователей под руководством Руси Талеярхана в эксперименте с ультразвуковой кавитацией ацетона, в котором простой водород замещён дейтерием, наблюдала замену дейтерия тритием и излучение нейтронов во время сонолюминесценции. При этом установка не выделяла дополнительную энергию. Сразу же после публикации физик Нэт Фиш (англ. Nat Fisch, занимается Физикой Плазмы в Принстонском университете) высказался: «То, что я видел, производит впечатление безграмотного и неряшливого отчёта».

Два других сотрудника Окриджской лаборатории повторили эксперимент на той же аппаратуре с другим детектором и не обнаружили поток нейтронов, который наблюдал Талеярхан.

Кроме того, критики указывают, что температура и энергия в центре схлопывающихся пузырьков на три порядка ниже, чем нужно для слияния ядер дейтерия.

Япония, 2008

В 2008 году отставной японский учёный Ёсиаки Арата (d; англ., яп.) из Осакского университета совместно с китайским коллегой Юэчан Чжан из Шанхайского университета сообщили о выделении энергии в эксперименте с палладием, оксидом циркония и дейтерием под высоким давлением, и заявили, что они наблюдали реакцию холодного ядерного синтеза с выделением гелия. Авторы не сообщили никаких данных о деталях своих опытов, в том числе не предоставили для анализа методику измерений. Арата ещё в 2004 г. запатентовал свою установку в Японии и в 2006 г. — в США

Генератор Росси

Основная статья: Катализатор энергии Росси

В январе 2011 года Андреа Росси (d; англ.) (Болонья, Италия), как он сам утверждает, испытал опытную установку «Катализатор энергии Росси» по превращению никеля в медь при участии водорода, а 28 октября 2011 года им была продемонстрирована для журналистов известных СМИ и заказчика из США промышленная установка на 1 МВт. История вызвала всплеск интереса СМИ.

По одному из заявлений Росси в январе 2011 года, он имеет чёткое понимание о задействованном механизме, но отказывается публично его раскрывать, пока не будет получен патент.

Профессор Уго Барди (Ugo Bardi) из Флорентийского университета, отмечая противоречивые заявления Росси о наличии/отсутствии гамма-излучения, размещении производства (то во Флориде, то не в США), а также то, что часть сторонников и спонсоров уже вышла из проекта, в марте 2012 года высказался о нём:

…E-Cat достиг своего конца. Он ещё имеет нескольких уверенных сторонников, но, наиболее вероятно, вскоре канет во мрак патологической науки, к которому он и принадлежит.

В 2014 году группа профессора физики Болонского университета Джузеппе Леви исследовала параметры процесса. Дж. Леви сообщил, что устройство, в котором один грамм топлива нагревали до температуры около 1400ºС с помощью электричества, производило аномальное количество тепла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector