Фуллерен

История открытия

В 1985 году группа исследователей — Роберт Кёрл, Харольд Крото, Ричард Смолли, Хис и О’Брайен — исследовали масс-спектры паров графита, полученных при лазерном облучении (абляции) твёрдого образца, и обнаружили пики с максимальной амплитудой, соответствующие кластерам, состоящим из 60 и 70 атомов углерода. Они предположили, что данные пики отвечают молекулам С60 и С70 и выдвинули гипотезу, что молекула С60 имеет форму усечённого икосаэдра симметрии Ih. Полиэдрические кластеры углерода получили название фуллеренов, а наиболее распространённая молекула С60 — бакминстерфуллерена (англ. buckminsterfullerene) (также её называют бакибо́лом или букибо́лом, англ. buckyball), по имени американского архитектора Бакминстера Фуллера, применявшего для постройки куполов своих зданий пяти- и шестиугольники, являющиеся основными структурными элементами молекулярных каркасов всех фуллеренов.

Следует отметить, что открытие фуллеренов имеет свою предысторию: возможность их существования была предсказана ещё в 1971 году в Японии и теоретически обоснована в 1973 году в СССР. За открытие фуллеренов Крото, Смолли и Кёрлу в 1996 году была присуждена Нобелевская премия по химии. Единственным способом получения фуллеренов в настоящий момент (октябрь 2007) является их искусственный синтез. В течение ряда лет эти соединения интенсивно изучали в лабораториях разных стран, пытаясь установить условия их образования, структуру, свойства и возможные сферы применения. Установлено, в частности, что фуллерены в значительном количестве содержатся в саже, образующейся в дуговом разряде на графитовых электродах — их раньше просто не замечали (см. ).

Структурные свойства

Молекулярное образование углерода в форме усечённый икосаэдр имеет массу 720 а. е. м. В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов — фуллерен (C60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий (как идеальная форма, крайне редко встречающаяся в природе). Так как каждый атом углерода фуллерена С60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13С — он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1,39 Å, а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1,44 Å. Кроме того, связь первого типа двойная, а второго — одинарная, что существенно для химии фуллерена С60. В действительности изучение свойств фуллеренов полученных в больших количествах показывают распределение их объективных свойств (химическая и сорбционная активности) на 4 устойчивых изомера фуллерена, свободно определяемые по различному времени выхода из сорбционной колонки жидкостного хроматографа высокого разрешения. При этом атомная масса всех 4-х изомеров равнозначна — имеет массу 720 а. е. м.

Следующим по распространённости является фуллерен C70, отличающийся от фуллерена C60 вставкой пояса из 10 атомов углерода в экваториальную область C60, в результате чего молекула 34 является вытянутой и напоминает своей формой мяч для игры в регби.

Так называемые , содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить Cn, n=74, 76, 78, 80, 82 и 84.

Фуллерены в природе

После получения в лабораторных условиях фуллерены были найдены в некоторых образцах шунгитов Северной Карелии в фульгуритах США и Индии, метеоритах и донных отложениях, возраст которых достигает 65 миллионов лет.

На Земле фуллерены образуются при горении природного газа и разряде молнии. Летом 2011 года были опубликованы результаты исследований проб воздуха над Средиземным морем: во всех 43 образцах воздуха, взятых от Барселоны до Стамбула, были обнаружены фуллерены.

Фуллерены в больших количествах были обнаружены и в космосе: в 2010 году в виде газа, в 2012 году — в твёрдом виде.

Примечания

  1. Слюсар, В.И. . Электроника: наука, технология, бизнес. – 2009. — № 2. C. 58 (2009).
  2. Osawa E. Kagaku (Kyoto), V.25, P.854 (1971); Chem. Abstr. V.74 (1971)
  3. Бочвар Д. А., Гальперн Е. Г. О гипотетических системах: карбододекаэдре, s-икосаэдране и карбо-s-икосаэдре // Доклады АН СССР. — 1973. — Т. 209, № 3. — С. 610.
  4. Юшкин Н. П.. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. // ДАН. (1994) 337(6): 800—803.
  5. В. А. Резников. Ю. С. Полеховский. Аморфный шунгитовый углерод — естественная среда образования фуллеренов. // Письма в ЖЭТФ. (2000) 26(15): 94-102.
  6. ↑ Белоусов В. П., Будтов В. П., Данилов О. Б., Мак А. А. Оптический Журнал, т.64, № 12, с.3 (1997)
  7. Kratschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Nature, V.347, № 354 (1990)
  8. Г.П.Ковтун, А.А.Веревкин. Наноматериалы: технологии и материаловедение. Обзор. — Харьков: ННЦ ХФТИ, 2010. — 73 с.
  9. Ozawa M., Deota P., Ozawa E., Fullerene Sci. Technol. V. 7. № 3. P. 387—409 (1999)
  10. Diederich F., Nature. V. 369. P. 199—207 (1994)
  11. Богданов А. А., Дайнигер Д., Дюжев Г. А. ЖТФ. Т. 70, № 5. С. 1 (2000)
  12. ↑ Вуль А. Я. Материалы электронной техники. № 3. С. 4 (1999)
  13. Елецкий А. В., Смирнов Б. М. // УФН. — Т. 163, № 2. — С. 33 (1993)
  14. Vaughan G. B. M. et al. Science, V. 254, P. 1350 (1991)
  15. G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky, L. A. Vashchenko. ON THE PRODUCTION OF AN AQUEOUS COLLOIDAL SOLUTION OF FULLERENES. J. Chem. Soc., Chem. Commun. 12 (1995) 1281—1282.
  16. G. V. Andrievsky, V. K. Klochkov, A. Bordyuh, G. I. Dovbeshko. COMPARATIVE ANALYSIS OF TWO AQUEOUS-COLLOIDAL SOLUTIONS OF C60 FULLERENE WITH HELP OF FT-IR REFLECTANCE AND UV-VIS SPECTROSCOPY. Chem. Phys. Letters, 364 (2002) 8-17.
  17. G. V. Andrievsky, V. K. Klochkov, L. I. Derevyanchenko. Is C60 fullerene molecule toxic?! Fullerenes, Nanotubes and Carbon Nanostructures, 13 (4), (2005) 363-37
  18. G. V. Andrievsky, V. I. Bruskov, A. A. Tykhomyrov, S. V. Gudkov. Peculiarities of the antioxidant and radioprotective effects of hydrated c60 fullerene nanostuctures in vitro and in vivo. Free Radical Biology & Medicine, 47 (2009) 786—793.
  19.  (недоступная ссылка). Дата обращения 6 февраля 2010.
  20. Y. Wada, M. Tsukada, M. Fujihira, K. Matsushige, T. Ogawa et al., «Prospects and Problems of Single Molecule Information Devices», Jpn. J. Appl. Phys., V. 39, Part 1, N 7A, pp. 3835-3849 (2000)
  21. Hebard A.F. Annu. Rev. Mater. Sci., V.23, P.159 (1993)

Свойства

При нормальных условиях (300 К) молекулы фуллерена образуют гранецентрированную кубическую (ГЦК) кристаллическую решётку.

Период такой решётки составляет а = 1,417 нм, средний диаметр молекулы фуллерена С60 составляет 0,708 нм, расстояние между соседними молекулами С60 равно 1,002 нм.[источник не указан 2450 дней]Плотность фуллерита составляет 1,7 г/см³, что значительно меньше плотности графита (2,3 г/см³) и тем более алмаза (3,5 г/см³). Это связано с тем, что молекулы фуллерена, расположенные в узлах решётки фуллерита, полые.

Поскольку силы взаимодействия между молекулами С60 в кристалле малы, а симметрия очень высока, то при температуре выше 260 К молекулы фуллерена вращаются (представляя собой таким образом фазу пластического кристалла), и к ним вполне применима модель шарового слоя. Частота вращения, разумеется, зависит от температуры, и при Т = 300 К равна приблизительно 1012 Гц. При понижении температуры (Т < 260 K) вращение молекул фуллерена прекращается. При Т = 260 К происходит изменение кристаллической структуры фуллерита (фазовый переход 1-го рода) с одновременным замораживанием вращательного движения молекул вследствие увеличения энергии межмолекулярного взаимодействия. Так называемая низкотемпературная фаза фуллерита имеет простую кубическую (ПК) решётку.

Элементарная ячейка кристаллической решётки фуллерита содержит 8 тетраэдрических и 4 октаэдрических пустот, каждая из которых окружена соответственно 4 и 6 молекулами С60. Размеры октаэдрических пустот составляют 0,42 нм, тетраэдрических — 0,22 нм.

В низкотемпературной фазе фуллерита на каждую молекулу С60 приходится две тетраэдрические и одна октаэдрическая межузельные пустоты со средними линейными размерами, приблизительно, 2,2 Å и 4,2 Å, соответственно

Фуллериты достаточно устойчивы химически и термически, хотя и представляют собой фазу, термодинамически невыгодную относительно графита. Они сохраняют стабильность в инертной атмосфере вплоть до температур порядка 1200 К, при которых происходит образование графита. Образования жидкой фазы вплоть до этих температур не наблюдается. В присутствии кислорода уже при 500 К наблюдается заметное окисление с образованием CO и CO2. Химической деструкции фуллерита также способствует наличие следов растворителей. Фуллериты достаточно легко растворяются в неполярных ароматических растворителях и в сероуглероде CS2.

Благодаря тому, что молекулы фуллеренов в фуллерите сближены, из них могут быть получены различные олигомеры и полимерные фазы под действием света, облучения электронами или давления. При давлении до 10 ГПа получены и охарактеризованы орторомбическая фаза, состоящая из линейных цепочек связанных между собой молекул С60, а также тетрагональная и ромбоэдрическая фазы, состоящие из слоев с тетрагональной и гексагональной сетями межмолекулярных связей, соответственно.

Существуют данные об образовании из фуллерита ферромагнитных полимеризованных фаз (так называемый магнитный углерод) под действием давления и температуры, хотя природа этого явления и сами данные не вполне однозначны. Существование таких фаз может быть связано с образованием дефектов, присутствием примесных атомов и частиц, а также с частичным разрушением молекул фуллерена. При давлениях свыше 10 ГПа и температурах свыше 1800 К происходит образование алмазных фаз, причем при определенных условиях могут быть получены нанокристаллические алмазы. Отмечают, что образование алмазов из фуллерита происходит при более низких температурах по сравнению с графитом.

Особенностью фуллеритов является присутствие сравнительно больших межмолекулярных пустот, в которые могут быть внедрены атомы и небольшие молекулы. В результате заполнения этих пустот атомами щелочных металлов получают фуллериды, проявляющие сверхпроводящие свойства при температурах до 20—40 К.

Примечания

  1. Сидоров Л. Н., Иоффе И. Н. Эндоэдральные фуллерены // Соросовский образовательный журнал, 2001, № 8, с.31
  2. Osawa E. Kagaku (Kyoto), V.25, P.854 (1971); Chem. Abstr. V.74 (1971)
  3. Бочвар Д. А., Гальперн Е. Г. О гипотетических системах: карбододекаэдре, s-икосаэдране и карбо-s-икосаэдре // Доклады АН СССР. — 1973. — Т. 209, № 3. — С. 610.
  4. Юшкин Н. П.. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. // ДАН. (1994) 337(6): 800—803.
  5. В. А. Резников. Ю. С. Полеховский. Аморфный шунгитовый углерод — естественная среда образования фуллеренов. // Письма в ЖЭТФ. (2000) 26(15): 94-102.
  6. ↑ Белоусов В. П., Будтов В. П., Данилов О. Б., Мак А. А. Оптический Журнал, т.64, № 12, с.3 (1997)
  7. Kratschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Nature, V.347, № 354 (1990)
  8. Г.П.Ковтун, А.А.Веревкин. Наноматериалы: технологии и материаловедение. Обзор. — Харьков: ННЦ ХФТИ, 2010. — 73 с.
  9. Ozawa M., Deota P., Ozawa E., Fullerene Sci. Technol. V. 7. № 3. P. 387—409 (1999)
  10. Diederich F., Nature. V. 369. P. 199—207 (1994)
  11. Богданов А. А., Дайнигер Д., Дюжев Г. А. ЖТФ. Т. 70, № 5. С. 1 (2000)
  12. ↑ Вуль А. Я. Материалы электронной техники. № 3. С. 4 (1999)
  13. Елецкий А. В., Смирнов Б. М. // УФН. — Т. 163, № 2. — С. 33 (1993)
  14. Vaughan G. B. M. et al. Science, V. 254, P. 1350 (1991)
  15. G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky, L. A. Vashchenko. ON THE PRODUCTION OF AN AQUEOUS COLLOIDAL SOLUTION OF FULLERENES. J. Chem. Soc., Chem. Commun. 12 (1995) 1281—1282.
  16. G. V. Andrievsky, V. K. Klochkov, A. Bordyuh, G. I. Dovbeshko. COMPARATIVE ANALYSIS OF TWO AQUEOUS-COLLOIDAL SOLUTIONS OF C60 FULLERENE WITH HELP OF FT-IR REFLECTANCE AND UV-VIS SPECTROSCOPY. Chem. Phys. Letters, 364 (2002) 8-17.
  17. G. V. Andrievsky, V. K. Klochkov, L. I. Derevyanchenko. Is C60 fullerene molecule toxic?! Fullerenes, Nanotubes and Carbon Nanostructures, 13 (4), (2005) 363-37
  18. G. V. Andrievsky, V. I. Bruskov, A. A. Tykhomyrov, S. V. Gudkov. Peculiarities of the antioxidant and radioprotective effects of hydrated c60 fullerene nanostuctures in vitro and in vivo. Free Radical Biology & Medicine, 47 (2009) 786—793.
  19. Y. Wada, M. Tsukada, M. Fujihira, K. Matsushige, T. Ogawa et al., «Prospects and Problems of Single Molecule Information Devices», Jpn. J. Appl. Phys., V. 39, Part 1, N 7A, pp. 3835-3849 (2000)
  20. Hebard A.F. Annu. Rev. Mater. Sci., V.23, P.159 (1993)

Медицинское значение

Антиоксиданты

Фуллерены являются мощнейшими антиоксидантами, известными на сегодняшний день. В среднем они превосходят действие всех известных до них антиоксидантов в 100—1000 раз. Предполагается, что именно благодаря этому они способны значительно продлевать среднюю продолжительность жизни крыс и круглых червей.
В природном виде содержатся в шунгите и морском воздухе.
Предполагается, что фуллерен С60, растворённый в оливковом масле, может встраиваться в двухслойные липидные мембраны клеток и митохондрий и действовать как многоразовый антиоксидант.

Создание новых лекарств

Фуллерены могут быть также использованы в фармакологии для создания новых лекарств. Так, в 2007 году были проведены исследования, показавшие, что эти вещества могут оказаться перспективными для разработки противоаллергических средств.

Борьба с ВИЧ

Различные производные фуллеренов показали себя эффективными средствами в лечении вируса иммунодефицита человека: белок, ответственный за проникновение вируса в кровяные клетки — ВИЧ-1-протеаза, — имеет сферическую полость диаметром 10 Ǻ, форма которой остается постоянной при всех мутациях. Такой размер почти совпадает с диаметром молекулы фуллерена. Синтезировано производное фуллерена, которое растворимо в воде. Оно блокирует активный центр ВИЧ-протеазы, без которой невозможно образование новой вирусной частицы.

По данным портала ЗАЧЕСТНЫЙБИЗНЕСОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ФУЛЛЕРИТ»По данным портала ЗАЧЕСТНЫЙБИЗНЕС7805721167

О компании:
ООО «ФУЛЛЕРИТ» ИНН 7805721167, ОГРН 1187847018260 зарегистрировано 30.01.2018 в регионе Санкт-Петербург по адресу: 198097, г Санкт-Петербург, улица Маршала Говорова, дом 29 ЛИТЕР К, ПОМЕЩЕНИЕ 1Н №151. Статус: Ликвидировано. Размер Уставного Капитала 20 000,00 руб.

Руководителем организации является: Генеральный Директор — Ерофеев Альберт Олегович, ИНН . У организации 1 Учредитель. Основным направлением деятельности является «строительство жилых и нежилых зданий».

Внимание: В результате проверки, сведения об юридическом адресе признаны недостоверными (по данным ФНС)

Статус: ?
Ликвидировано

Дата регистрации: По данным портала ЗАЧЕСТНЫЙБИЗНЕС

?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

30.01.2018

Дата ликвидации: 04.12.2019

ОГРН 
?
 
1187847018260   
присвоен: 30.01.2018
ИНН 
?
 
7805721167
КПП 
?
 
780501001
ОКПО 
?
 
24537101
ОКТМО 
?
 
40339000000

Юридический адрес: ?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
198097, г Санкт-Петербург, улица Маршала Говорова, дом 29 ЛИТЕР К, ПОМЕЩЕНИЕ 1Н №151
получен 30.01.2018
зарегистрировано по данному адресу:
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

По данным портала ЗАЧЕСТНЫЙБИЗНЕС
Руководитель Юридического Лица
 ?По данным портала ЗАЧЕСТНЫЙБИЗНЕС
Генеральный Директор
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Ерофеев Альберт Олегович

ИНН ?

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

действует с По данным портала ЗАЧЕСТНЫЙБИЗНЕС
24.09.2018

Учредители ? ()
Уставный капитал: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
20 000,00 руб.

100%

Ерофеев Альберт Олегович
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

20 000,00руб., 01.08.2018 , ИНН

Основной вид деятельности: ?По данным портала ЗАЧЕСТНЫЙБИЗНЕС
41.20 строительство жилых и нежилых зданий

Дополнительные виды деятельности:

Единый Реестр Проверок (Ген. Прокуратуры РФ) ?

Реестр недобросовестных поставщиков: ?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС

не числится.

Налоговый орган ?
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
Межрайонная Инспекция Федеральной Налоговой Службы №19 По Санкт-Петербургу
Дата постановки на учет: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
30.01.2018

Регистрация во внебюджетных фондах

Фонд Рег. номер Дата регистрации
ПФР 
?
 
088006110302
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
31.01.2018
ФСС 
?
 
781014986578291
По данным портала ЗАЧЕСТНЫЙБИЗНЕС
31.03.2019

Уплаченные страховые взносы за 2018 год (По данным ФНС):

— на обязательное пенсионное страхование, зачисляемые в Пенсионный фонд Российской Федерации: 0,00 руб. ↓ -0 млн.

Коды статистики

ОКАТО 
?
 
40276000000
ОКОГУ 
?
 
4210014
ОКОПФ 
?
 
12300
ОКФС 
?
 
16

Финансовая отчетность ООО «ФУЛЛЕРИТ» (по данным РОССТАТ) ?

Основные показатели отчетности за 2019 год (по данным ФНС):
Сумма доходов: — 0,00 руб.
Сумма расходов: — 20 000,00 руб.Уплаченные налоги за 2018 г.:По данным портала ЗАЧЕСТНЫЙБИЗНЕС
— налог на добавленную стоимость: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
0,00 руб.По данным портала ЗАЧЕСТНЫЙБИЗНЕС
— налог, взимаемый в связи с применением упрощенной системы налогообложения: По данным портала ЗАЧЕСТНЫЙБИЗНЕС
0,00 руб.

В качестве Поставщика:

,

на сумму

В качестве Заказчика:

,

на сумму

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Судебные дела ООО «ФУЛЛЕРИТ» ?

найдено по ИНН: По данным портала ЗАЧЕСТНЫЙБИЗНЕС

найдено по наименованию (возможны совпадения): По данным портала ЗАЧЕСТНЫЙБИЗНЕС

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Исполнительные производства ООО «ФУЛЛЕРИТ»
?

найдено по наименованию и адресу (возможны совпадения): По данным портала ЗАЧЕСТНЫЙБИЗНЕС

По данным портала ЗАЧЕСТНЫЙБИЗНЕС

Лента изменений ООО «ФУЛЛЕРИТ»
?

Не является участником проекта ЗАЧЕСТНЫЙБИЗНЕС ?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector