Какое излучение обладает наибольшей ионизирующей способностью?

В каких единицах измеряется радиоактивность?

Мерой радиоактивности радионуклида в соответствии с системой измерений СИ, является его активность, которая измеряется в Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Кроме того, в качестве меры радиоактивности широко используется не системная величина Кюри (Ки) и ее производные (милликюри, микрокюри и т.д.). Численно 1 Кюри = 3.7*1010 Бк, а 1 Бк = 0.027нКи (наноКюри). Содержание активности в единице массы вещества характеризуется удельной активностью, которая измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма)?

Мерой воздействия ионизирующего излучения является экспозиционная доза и измеряется она в Рентгенах (Р) и его производных (млР, мкР), а количественную сторону его характеризует мощность экспозиционной дозы,, которая измеряется в Рентгенах/сек (Р/сек.) и его производных (млР/час, мкР/час, мкР/сек).

Рентген – это доза рентгеновского или гамма-излучения в воздухе, при которой на 0.001293 г воздуха образуются ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака.

Эквивалентная доза – она равна произведению поглощенной дозы на средний коэффициент качества ионизирующего излучения (Например: коэффициент качества гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр ( мкбэр) и т.д., 1 бэр = 0,01 Дж/кг-1. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1Зв=1Дж/кг-1= 100 бэр.

1 мбэр = 1*10-3 бэр; 1 мкбэр = 1*10-6 бэр;

Поглощенная доза — количество энергии ионизирующего излучения которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад и его дольные значения, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1Гр=100рад=1Дж/кг-1

Доза – это сокращенное название эквивалентной дозы — мощности экспозиционной дозы умноженной на время экспозиции, единица измерения бэр.

Мощность дозы – сокращенное название мощности эквивалентной дозы.

Мощность эквивалентной дозы – это отношение приращения эквивалентной дозы за интервал времени к этому интервалу времени, единица измерения бэр/час, Зв/час.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как величина плотности потока частиц с единицы площади, в единицу времени a-частиц*мин/см2, b-частиц*мин/см2.

Источники ионизирующего излучения

Природные источники ионизирующего излучения:

  • Спонтанный радиоактивный распад радионуклидов.
  • Термоядерные реакции, например, на Солнце.
  • Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.
  • Космические лучи.

Искусственные источники ионизирующего излучения:

  • Искусственные радионуклиды.
  • Ядерные реакторы.
  • Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение

    Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.

    ).

Наведённая радиоактивность

Многие стабильные атомы в результате облучения и соответствующей индуцированной ядерной реакции превращаются в нестабильные изотопы. В результате такого облучения стабильное вещество становится радиоактивным, причем тип вторичного ионизирующего излучения будет отличаться от первоначального облучения. Наиболее ярко такой эффект проявляется после нейтронного облучения.

Цепочка ядерных превращений

В процессе ядерного распада или синтеза возникают новые нуклиды, которые также могут быть нестабильны. В результате возникает цепочка ядерных превращений. Каждое превращение имеет свою вероятность и свой набор ионизирующих излучений. В результате интенсивность и характер излучений радиоактивного источника может значительно меняться со временем.

Краткая характеристика ионизирующих излучений

Ионизирующее излучение (ИИ) – это излучение, взаимодействие которого со средой приводит к образованию в этой среде ионов разных знаков. Излучение считается ионизирующим, если оно способно разрывать химические связи молекул. Ионизирующее излучение делят на корпускулярное и фотонное.

Радиоволны, световые волны, тепловая энергия Солнца не относятся к ионизирующим излучениям, так как они не вызывают повреждения организма путем ионизации.

Корпускулярное – это поток частиц с массой отличной от нуля (электроны, протоны, нейтроны, альфа-частицы).

Фотонное – это электромагнитное излучение, косвенно ионизирующее излучение (гамма излучение, характеристическое излучение, тормозное излучение, рентгеновское излучение, аннигиляционное излучение).

Альфа-излучение – это поток альфа-частиц (ядер атомов гелия), испускаемых при радиоактивном распаде, а также при ядерных реакциях и превращениях. Альфа-частицы обладают сильной ионизирующей способностью и незначительной проникающей способностью. В воздухе они проникают на глубину несколько сантиметров, в биологической ткани – на глубину доли миллиметра, задерживается листом бумаги, тканью одежды. Альфа-излучение особо опасно при попадании его источника внутрь организма с пищей или с вдыхаемым воздухом.

Бета-излучение – это поток электронов или позитронов, испускаемых ядрами радиоактивных элементов при бета-распаде. Их ионизирующая способность меньше, чем у альфа-частиц, но проникающая способность во много раз больше, и составляет десятки сантиметров. В биологической ткани они проникают на глубину до 2 см, одеждой задерживается только частично. Бета-излучение опасно для здоровья человека, как при внешнем, так и при внутреннем облучении.

Протонное излучение – это поток протонов, составляющих основу космического излучения, а также наблюдаемых при ядерных взрывах. Их пробег в воздухе и проникающая способность занимают промежуточное положение между альфа и бета-излучением.

Нейтронное излучение – поток нейтронов, наблюдаемых при ядерных взрывах, особенно нейтронных боеприпасов и работе ядерного реактора. Последствия его воздействия на окружающую среду зависят от начальной энергии нейтрона, которая может меняться в пределах 0,025 –300 МэВ.

Гамма-излучение – электромагнитное излучение (длина волны 10–10–10–14 м), возникающее в некоторых случаях при альфа и бета-распаде, аннигиляции частиц и при возбуждении атомов и их ядер, торможении частиц в электрическом поле. Проникающая способность гамма-излучения значительно больше, чем у вышеперечисленных видов излучений. Глубина распространения гамма-квантов в воздухе может достигать сотен и тысяч метров. Ионизирующая способность (косвенная) значительно меньше, чем у вышеперечисленных видов излучений. Большинство гамма-квантов проходит через биологическую ткань, и только незначительное количество поглощается телом человека.

Тормозное излучение – фотонное излучение с непрерывным энергетическим спектром, испускаемое при уменьшении кинетической энергии заряженных частиц. Воздействие на окружающую среду такое, как и гамма-излучения.

Характеристическое излучение – фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома. Воздействие на биологическую ткань аналогично гамма-излучению.

Аннигиляционное излучение – фотонное излучение, возникающее в результате аннигиляции частицы и античастицы (например, позитрона и электрона). Воздействие на биологическую ткань аналогично гамма-излучению.

Рентгеновское излучение – фотонное излучение (длина волны 10–-9–10–-12 м), состоящее из тормозного и (или) характеристического излучения, генерируемого рентгеновскими аппаратами, и возникающее при некоторых ядерных реакциях. В отличие от гамма-излучения оно обладает такими свойствами как отражение и преломление.

Как радиация получается[править]

  • От радиоактивных элементов или изотопов. Самое известное ее происхождение. Суть в том, что лишь ограниченное число конфигураций протонов и нейтронов в атомных ядрах стабильно. Все остальные неустойчивы и самопроизвольно распадаются, порождая радиацию. Это и называется радиоактивностью.
    • Интенсивность радиоактивного распада элементов имеет не постоянную, а экспоненциальную зависимость: у каждого радиоактивного ядра есть какая-то вероятность распасться, и чем больше атомов элемента, тем больше распадов в единицу времени. Поэтому не говорят о периоде полного распада какого-то элемента, а говорят о периоде полураспада

      Поправка. Радиоактивный распад ядра — понятие вероятностное, а не линейное, период полураспада — это такой промежуток времени, что вероятность распадения каждого ядра за него составляет 50 %. По прошествии этого периода «ровно половина» ядер останется нераспавшейся с такими же шансами, с какими из груды подброшенных монет ровно половина выпадет орлом. Однако когда атомов очень много, из большого количества радиоактивного вещества один за период полураспада распадётся количество ядер, очень близкое к 50 %.

      . То есть о периоде, за который от исходного количества атомов остаётся ровно половина. Если подождать ещё один период полураспада, то от оставшейся половины тоже останется половина, то есть четверть от исходного. После трёх периодов полураспада — одна восьмая. Чем меньше период полураспада, тем интенсивнее излучаемая радиация.

  • От ядерных взрывов и реакторов. Основной источник нейтронного излучения.
  • Из космоса. В космосе летает огромное количество разнообразных частиц. Тут полный зоопарк: и протоны, и электроны, и позитроны, и всякая вконец экзотическая шушера типа мюонов или мезонов. Правда, гаммы довольно мало, а нейтронов, к счастью, практически нет, потому что в свободном виде нейтрон неустойчив, имеет период полураспада в 10 минут и космические расстояния преодолевать просто не успевает

    А вот возле ярко-голубых звёзд радиация сильнее и жёстче, как и в двойных системах с нейтронной звездой, особенно если на нейтронную звезду падает вещество. Нейтронные звезды также интересны вот чем: они настолько горячи, что их тепловое излучение доходит до рентгеновского диапазона. Также до рентгена и гаммы накаляется вещество, падающее в чёрные дыры.

    . Образуется вся эта музыка в звёздных ядерных реакциях. Два основных вида: солнечный ветер (то есть лучи добра от ближайшей звезды — довольно низкоэнергетические, но их много) и собственно космические (долетающие из дальнего космоса, их мало, но они очень быстрые и проникающие). У планет, обладающих магнитным полем, например, Земли и Юпитера, есть радиационные пояса, в которых за счёт этого самого поля улавливаются и концентрируются частицы. Радиация там значительно сильнее, чем во всём остальном космосе.

Знак радиационной опасности

Новый знак радиационной опасности

Международный условный («трилистник», «вентилятор») имеет форму трёх секторов шириной 60°, расставленных на 120° друг относительно друга, с небольшим кругом в центре. Выполняется чёрным цветом на жёлтом фоне.

В таблице символов Юникод есть символ знака радиационной опасности — (U+0x2622).

В 2007 году был принят новый знак радиационной опасности, в котором «трилистник» дополнен знаками «смертельно» («череп с костями») и «уходи!» (силуэт бегущего человека и указывающая стрелка). Новый знак призван стать более понятным для тех, кто не знаком со значением традиционного «трилистника».

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Cloudflare Ray ID: 41e7064ef5d56403 • Your IP : 5.189.134.229 • Performance & security by Cloudflare

Наименьшую проникающую способность имеют

20. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ И ИХ ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ

Ионизацией называется образование положительных и отрицательных ионов и свободных электронов из электрически нейтральных атомов и молекул. Ионизация атмосферы – образование положительных и отрицательных ионов (атмосферных ионов) и свободных электронов в атмосферном воздухе под воздействием солнечной радиации. В результате ионизации атмосферный воздух приобретает электропроводность и особые целебные свойства.

Радиоактивные излучения (альфа-, бета-частицы, нейтроны, гамма-кванты) обладают различной проникающей и ионизирующей способностью. Наименьшей проникающей способностью обладают альфа-частицы (ядра гелия), длина пробега которых в ткани человека составляет доли миллиметра, а в воздухе – несколько сантиметров. Они не могут пройти через лист бумаги, но обладают наибольшей ионизирующей способностью.

Бета-частицы обладают большей проникающей способностью, но ионизирующая способность бета-частиц (электронов, позитронов) в 1000 раз меньше, чем у альфа-частиц, и при пробеге в воздухе на 1 см пути они образуют несколько десятков пар ионов.

Гамма-кванты относятся к электромагнитным излучениям и обладают большой проникающей способностью (в воздухе – до нескольких километров); их ионизирующая способность значительно меньше, чем у альфа– и бета-частиц. Нейтроны (частицы ядра атома) обладают значительной проникающей способностью, что объясняется отсутствием у них заряда. Их ионизирующая способность связана с наведенной радиоактивностью, которая образуется в результате попадания нейтрона в ядро атома вещества: тем самым нарушается его стабильность, образуется радиоактивный изотоп. Ионизирующая способность нейтронов при определенных условиях может быть аналогична альфа-излучению.

Ионизирующие излучения, обладающие большой проникающей способностью, представляют опасность в большей степени при внешнем облучении, а альфа– и бета-излучения – при непосредственном воздействии на ткани организма при попадании внутрь организма с вдыхаемым воздухом, водой, пищей.

При внешнем облучении всего тела или отдельных его участков (местном воздействии) или внутреннем облучении человека или животных в поражающих дозах может развиться заболевание, называемое лучевой болезнью.

В настоящее время лучевое поражение людей может быть связано с нарушением правил и норм радиационной безопасности при выполнении работ с источниками ионизирующих излучений, при авариях на радиационно-опасных объектах, при ядерных взрывах и др.

Наименьшую проникающую способность имеют

Известно, что источником радиации являются радиоактивные ядра, способные самопроизвольно распадаться. Само слово «радиоактивный» вызывает страх и неприятие, в то время как оно означает лишь нестабильность отдельных изотопов различных элементов. Отметим, что естественные радиоактивные ядра существовали всегда, до и после появления ядерной энергетики. Любая вещь, любой материальный предмет из тех, которые нас окружают, содержит определенную долю радионуклидов (не имеющих никакого отношения к ядерной отрасли), способных распадаться и испускать ионизирующее излучение — пресловутую радиацию. Установлено, что в более ранние геологические периоды естественный радиационный фон на нашей планете был гораздо выше, чем сейчас.

Известны три основных вида радиации, испускаемой радиоактивными ядрами

  • альфа-излучение
  • Представляет собой поток альфа-частиц, состоящих из двух протонов и двух нейтронов (собственно говоря, это ядра атомов гелия), образовавшихся в результате альфа-распада тяжелых ядер.
  • бета-излучение
  • Это поток электронов или позитронов (бета-частиц), образовавшихся в результате бета-распада радиоактивных ядер.
  • гамма-излучение
  • Гамма-излучение сопровождает альфа- или бета-распад и представляет собой поток гамма-квантов, являясь, по сути, электромагнитным излучением — то есть, оно имеет волновую природу, аналогичную природе света. Отличие в том, что гамма-кванты обладают гораздо большей энергией, чем кванты светового излучения, и поэтому имеют бóльшую проникающую способность.

Знак радиационной опасности

Новый знак радиационной опасности

Международный условный («трилистник», «вентилятор») имеет форму трёх секторов шириной 60°, расставленных на 120° друг относительно друга, с небольшим кругом в центре. Выполняется чёрным цветом на жёлтом фоне.

В таблице символов Юникод есть символ знака радиационной опасности — (U+0x2622).

В 2007 году был принят новый знак радиационной опасности, в котором «трилистник» дополнен знаками «смертельно» («череп с костями») и «уходи!» (силуэт бегущего человека и указывающая стрелка). Новый знак призван стать более понятным для тех, кто не знаком со значением традиционного «трилистника».

Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:

  • заряженные частицы, в том числе,
  • легкие заряженные частицы (электроны и позитроны);
  • тяжелые заряженные частицы (мюоны, пионы и другие мезоны, протоны, заряженные гипероны, дейтроны, альфа-частицы, и другие ионы);
  • электрически нейтральные частицы (нейтрино, нейтральные пионы и другие мезоны, нейтроны, нейтральные гипероны).

Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага  полностью защищают организм от внешних потоков альфа-частиц.

*Попадание источников альфа-частиц внутрь организма с воздухом, водой и пищей уже очень опасно.

Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм. А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.

Гамма-излучение — сопутствующее ядерным превращениям электромагнитное излучение. Сегодня  к гамма-излучению относят также жесткое рентгеновское излучение. Обладает очень высокой проникающей способностью. Оградить себя от гамма-излучения практически невозможно, однако можно ослабить его до приемлемого уровня. Защитные средства, обладающие экранирующим действием от такого рода радиации, выполняются из свинца, чугуна, стали, вольфрама и других металлов с высоким порядковым номером.

*Интенсивность гамма лучей (Cs-137) уменьшают в два раза сталь толщиной 2,8 см., бетон – 10 см., грунт – 14 см., дерево – 30 см.

Нейтронное излучение – поток нейтронов – тяжелых частиц, входящих в состав ядра. Для защиты от этого излучения можно использовать убежища, противорадиационные укрытия, дооборудованные подвалы и погреба. Потоки нейтронов, как и потоки гамма-излучения невозможно полностью экранировать. Быстрые нейтроны сначала надо замедлить в воде, полиэтилене, парафине, можно в бетоне, а затем их необходимо поглотить, например, в кадмиевой фольге, за которой должен стоять достаточный слой свинца, чтобы экранировать возникающее при захвате нейтронов ядрами кадмия высокоэнергетическое гамма-излучение. Поэтому защита от нейтронов, как правило, делается комбинированной.

Фон ионизирующего излучения

Фон ионизирующего излучения (или радиационный фон) — суммарное излучение от природных и техногенных источников.

В России радиационный мониторинг окружающей среды осуществляют федеральная служба Росгидромет и государственная корпорация Росатом. На международном уровне сбором информации и оценкой влияния радиоактивного излучения на человека и окружающую среду занимается Научный комитет по действию атомной радиации (НКДАР) при Организации объединённых наций.

Основными составляющими естественного (природного) радиационного фона являются космические лучи и излучение от радионуклидов земного происхождения, повсеместно содержащихся в земной коре.

Согласно данным НКДАР среднемировая мощность эффективной дозы от действия космических лучей (включая вторичное нейтронное излучение) на поверхности земли вне укрытий составляет 0,036 мкЗв/ч. С увеличением высоты над уровнем моря это значение существенно меняется и в зоне полётов гражданской авиации (9—12 км) может составлять 5—8 мкЗв/ч. Исходя из этого эффективная доза от действия космических лучей при трансатлантическом перелёте из Европы в Северную Америку достигает 30—45 мкЗв. Кроме того мощность дозы рассматриваемого излучения зависит от геомагнитной широты и состояния 11-летнего цикла солнечной активности. Вклад каждого из двух факторов в мощность дозы излучения составляет около 10 % .

Второй существенной составляющей естественного радиационного фона является γ-излучение от радионуклидов земного происхождения таких как 40K и продуктов распада урана-238 и тория-232 (226Th, 228Ac, 214Pb, 214Bi). Средняя мощность эффективной дозы от внешнего облучения этими радионуклидами в зависимости от региона находится в диапазоне от 0,030 до 0,068 мкЗв/ч. Как исключения, в мире имеются регионы с повышенным естественным радиационным фоном, обусловленным наличием монацитового песка с большим содержанием тория (города Гуарапари в Бразилии, Янцзян в Китае, штаты Керала и Мадрас в Индии, дельта Нила в Египте), вулканическими почвами (штат Минас-Жерайс в Бразилии, остров Ниуэ в Тихом океане) или наличием радия-226 в пресной воде (город Рамсар в Иране).

По данным Росгидромета на территории Российской Федерации мощность экспозиционной дозы γ-излучения (МЭД) находится в основном в пределах колебаний естественного радиационного фона (9—16 мкР/ч).

Превышение значений МЭД зафиксировано на загрязнённых после аварии на ЧАЭС территориях в Брянской, Калужской, Курской, Орловской и Тульской областях в диапазоне 19—25 мкР/ч. В 100-км зонах радиохимических предприятий и АЭС наблюдаются кратковременные повышения МЭД до 20 мкР/ч, однако среднегодовые значения находятся в пределах колебания фона — 9—14 мкР/ч.

Средняя годовая эффективная доза, получаемая человеком и обусловленная природными факторами, составляет 2400 мкЗв, в эту цифру кроме внешнего облучения от источников рассмотренных выше, входит внутренне облучение от радионуклидов попадающих в организм человека с воздухом, пищей и водой (суммарно 1500 мкЗв). В последнее время техногенное облучение в развитых странах приближается к вкладу от естественных источников. При этом доза от медицинских исследований и терапии с использованием источников ионизирующего излучения составляет 95 % всего антропогенного радиационного воздействия на человека.

Ионизирующая способность

Ионизирующей способностью обладают а -, р-частицы и — у-лучи.

Наибольшей ионизирующей способностью обладают а-лучи. Одна а-частица на пути 1 см создает в среднем 300 тысяч пар ионов. Проникающая способность а-лучей невелика. В зависимости от энергии а-частиц, которая колеблется в пределах 2 — 9 МэВ, в воздухе они способны преодолеть расстояние 2 5 — 8 6 см. В более плотных средах проникающая способность а-излучения еще меньше. Лист обычной писчей бумаги полностью его поглощает.

Наименьшей ионизирующей способностью и наибольшей проникающей способностью обладают фотонные излучения. Во всех процессах взаимодействия электромагнитного излучения со средой часть энергии преобразуется в кинетическую энергию вторичных электронов, которые, проходя через вещество, производят ионизацию. Прохождение фотонного излучения через вещество вообще не может быть охарактеризовано понятием пробега. Ослабление потока электромагнитного излучения в веществе подчиняется экспоненциальному закону и характеризуется коэффициентом ослабления л, который зависит от энергии излучения и свойств вещества. Особенность экспоненциальных кривых состоит в том, что они не пересекаются с осью абсцисс.

Радиоактивный нейтрализатор со стандартными источниками.

Наибольшей ионизирующей способностью обладают а-лучи. Одна ос-частица на пути 1 см создает в среднем — 20 тысяч пар ионов. Проникающая способность а-лучей невелика. В зависимости от энергии а-частиц, которая колеблется в пределах 2 — 9 Мэв, они способны преодолеть расстояние в воздухе от 2 5 до 8 6 см. В более плотных средах проникающая способность а-излучения еще меньше. Лист обычной писчей бумаги полностью его поглощает.

Определение ионизирующей способности частиц с массами, промежуточными между массами мезонов и протона.

Вследствие большой ионизирующей способности воды растворенные в ней соли оказываются в ионно-дисперсной форме.

Устройство радиационного ионизационного вакуумметра ( альфатрон.

Вследствие относительно слабой ионизирующей способности гг-излучения возникающие при ионизации ионные токи равны 10 — 8 — 10 — 12 а и поэтому должны быть усилены. С этой целью применяется электрометрическая лампа Т ( рис. 205); для обеспечения хорошей изоляции сетки, лампа Т и манометрическая лампа монтируются как единое целое.

Сопоставляя ионизирующую способность, длину траекторий, радиус кривизны этих разнозарядных частиц, Андерсон установил, что массы их одинаковы.

Сопоставляя ионизирующую способность, длину траекторий, радиус кривизны треков разнозарядных частиц, Андерсон установил, что массы их одинаковы.

Влияние растворителей на скорость сольволитических реакций аллильных хлорпроизводных.

У — ионизирующая способность исследуемого растворителя, определяемая таким образом, как описано выше. Для реакций, имеющих промежуточный механизм, значения m изменяются в этих пределах.

Для характеристики ионизирующей способности рентгеновского и — у-излучения введено понятие экспозиционной дозы. Рентген ( Р) — единица экспозиционной дозы рентгеновского и у-излучения, при которой сопряженная корпускулярная эмиссия на 1 см3 сухого атмосферного воздуха производит в воздухе ионы, несущие заряд в одну электростатическую единицу количества электричества каждого знака.

По своей ионизирующей способности жидкий SO2 намного превосходит один из других наиболее часто применяемых растворителей — нитробензол ( е 35) , хотя отмечено , что в растворах в нитробензоле ( СбН5) зС ВР — является сильным электролитом. Однако даже электролиты, являющиеся в кристаллическом состоянии ионами, частично ассоциируются в ионные пары в растворах в жидком SO2, и поэтому следует допустить такую же возможность для электролитов, которые могут существовать в ковалентной форме подобно три-арилметилгалогенидам. Впервые Циглер и Вольшитт указали на осложнения в интерпретации количественных данных, связанные с явлением ассоциации ионов ( подробнее этот вопрос обсужден в разд.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector