Что находится на краю вселенной?

Наше Солнце станет черным карликом

Такая судьба ожидает и наше Солнце. В далеком будущем наше Солнце выбросит свои внешние слои и превратится в белую карликовую звезду, которой будет оставаться миллиарды лет. Но однажды даже белые карлики начнут остывать. Спустя 10100 лет они остынут до температуры, равной температуре микроволнового фонового излучения, несколько градусов выше абсолютного нуля.

Когда это произойдет, наше светило станет черным карликом. Поскольку этот тип звезды настолько холодный, человеческому глазу он будет невидим. Для любого, кто попытается найти Солнце, которое подарило нам жизнь, это будет невозможно сделать с помощью оптических систем. Ему придется искать его по гравитационным эффектам. Большинство звезд, которые мы видим в ночном небе, станут черными карликами (еще одна причина, почему ночное небо станет чистым). Но за наше теплое Солнце особенно обидно.

Как долго продолжалась инфляция

Мы можем видеть только наблюдаемую Вселенную, порожденную окончанием инфляции и Большим Взрывом. Мы знаем, что инфляция должна была протекать по крайней мере в течение 10-32 секунды или около того, но наверняка она могла протекать и дольше. Но насколько дольше? Секунды? Годы? Миллиарды лет? Вечность? Всегда ли Вселенная была в состоянии инфляции? Было ли у инфляции начало? Появилась ли она из предыдущего состояния, которое было вечным? Или же все пространство и время возникли из ничего определенное время назад? Все может быть, и на все эти варианты нет окончательного и проверяемого ответа.

Вселенная намного больше, чем кажется

Насколько нам известно, Вселенная намного больше той части, которую мы наблюдаем. За пределами наблюдаемого нами следует ожидать много больше Вселенной, похожей на нашу, с теми же законами физики, теми же константами, космическими структурами и шансами на появление сложной жизни. Должны быть и другие «пузыри», в которых инфляция завершилась, множество пузырей, заключенных в еще большем пространстве-времени, подвергающемся бесконечной инфляции. И все же, какой бы большой эта Вселенная — или мультивселенная — ни была, она может и не быть бесконечной. Вероятнее всего, Вселенная имеет свой конец, свою протяженность, хоть и умозрительно большую.

Проблема лишь в том, что у нас недостаточно информации, чтобы окончательно ответить на этот вопрос. Мы знаем только, как получить доступ к информации, доступной внутри нашей наблюдаемой Вселенной: в этих 46 миллиардах световых лет во всех направлениях. Ответ на волнующий нас вопрос может быть закодирован в самой Вселенной, но мы просто не можем до него дотянуться. Пока что.

Все нуклоны распадутся


1534

Нуклоны — это частицы в ядре атома, протоны и нейтроны. Свободные нейтроны, как известно, распадаются с периодом полураспада в 10 минут. Но протоны невероятно стабильные. Никто не видел воочию распада протона. Но ближе к концу Вселенной все изменится.

Физики предполагают, что период полураспада протона составляет 1037 лет. Мы не наблюдали этого распада, поскольку Вселенная еще недостаточно стара. В эпоху распада (1034 – 1040 лет) протоны наконец начнут распадаться на позитроны и пионы. К концу эпохи распада все протоны и нейтроны во Вселенной закончатся.

Очевидно, у жизни во Вселенной начнутся проблемы. Если предположить, что человеческая раса пережила изменение Солнца и мигрировала в более дружелюбные части Вселенной, в определенный момент уже законы физики начнут диктовать смерть человеческой расы. Наши тела и все межзвездные объекты состоят из нуклонов. Когда они распадутся, любая жизнь закончится, поскольку сами атомы прекратят существование. Жизнь не сможет продолжить существование в таких условиях (и в такой форме) и Вселенная погрузится в эпоху черных дыр.

Большой отскок: может ли Вселенная расширяться бесконечно?

Наиболее распространенная в научных кругах гипотеза Большого отскока берет начало в недовольстве идеей космологической инфляции. Космическое микроволновое фоновое излучение является фундаментальным фактором в каждой модели Вселенной с тех пор, как было впервые обнаружено в 1965 году. Более того, реликтовое излучение является основным источником информации о том, как выглядела ранняя Вселенная и одновременно загадкой для физиков. Дело в том, что реликтовое излучение выглядит одинаково даже в регионах, которые, казалось бы, никогда не могли взаимодействовать друг с другом за всю историю Вселенной.

Шрамы, оставленные Большим взрывом в слабом реликтовом излучении, которое пронизывает весь космос, дают подсказки о том, как выглядела ранняя Вселенная

Согласно гипотезе Большого отскока, Вселенная будет расширяться до тех пор, пока не распадется до одной бесконечно малой точки — это цикл, который длится вечность. В 2007 году Мартин Боджавальд, физик из Пенсильванского университета, основываясь на модели Эйнштейна, выдвинул теорию Петлевой квантовой гравитации — область квантовой физики, описывающая чрезвычайно высокие энергии, которые доминировали в ранней Вселенной.Так, исследователи пришли к выводу, что Вселенная не возникла из ничего и не будет расширяться бесконечно. Однако исследование Божавальда показывает, что гипотетическая предыдущая Вселенная не была в точности такой, как наша. В общем и целом, гипотеза Большого отскока согласуется с картиной Большого взрыва о горячей, плотной вселенной, зародившейся 13,8 миллиардов лет назад, которая начала расширяться и охлаждаться. Но вместо того, чтобы стать началом пространства и времени, большой взрыв оказался моментом перехода Вселенной от более ранней фазы существования, во время которой пространство сокращалось.

Однако критики считают, что существует мало доказательств в поддержку этой теории. Так, Питер Войт, математик из Колумбийского университета, написал в своем блоге Not Even Wrong: «Для того, чтобы считаться легитимной теорией, такие заявления должны быть подкреплены доказательствами».

Множественные вселенные могут существовать

Готовы ли вы поверить в существование множественных вселенных?

Ее исследование также привело к возможным свидетельствам существования мультивселенной. В 2010 году группа ученых из Великобритании, Канады и США обнаружила четыре необычных и маловероятных круговых узора в CMB. Ученые предположили, что эти метки могут быть «синяками», которые остались на теле нашей Вселенной после столкновения с другими.

В 2015 году исследователь ЕКА Ранг-Рам Хари сделал аналогичное открытие. Хари взял модель CMB из небесной картинки обсерватории, а затем удалил все остальное, что мы о ней знаем — звезды, газ, межзвездную пыль и так далее. В этот момент небо должно было стать по большей части пустым, не считая фонового шума.

Но не стало. Вместо этого в определенном диапазоне частот Хари смог обнаружить рассеянные пятна на карте космоса, области, которые были примерно в 4500 раз ярче, чем должны были быть. Ученые придумали еще одно возможное объяснение: эти участки — это отпечатки столкновений между нашей Вселенной и параллельной.

Хари считает, что если мы не найдем другой способ объяснить эти отметины, «придется сделать вывод, что Природа, в конце концов, может играть в кости, и мы лишь одна случайная вселенная среди множества других».

На ночном небе не останется звезд

Поскольку само пространство расширяется быстрее света, существует космологический горизонт. Любой объект, который уходит за этот горизонт, потребует от нас способности наблюдать и записывать данные о нем с помощью частиц, путешествующих быстрее света. Но таких частиц не существует. Как только объекты уходят за космологический горизонт, они становятся недоступными для нас. Любая попытка контакта или взаимодействия с далекими галактиками за этим горизонтом потребует от нас технологий, способных двигаться быстрее расширения самого пространства. Пока лишь несколько объектов находятся за пределами нашего космологического горизонта. Но поскольку темная энергия ускоряет расширение, все в конечном итоге окажется за пределами досягаемости наших глаз.

Что это означает для Земли? Представьте, что смотрите в ночное небо через 150 миллиардов лет. Единственное, что будет видно, это несколько звездочек, которые остались в пределах космологического горизонта. В конце концов, уйдут и они. Ночное небо будет полностью чистым, как табула раса. Астрономы будущего не смогут доказать, что во Вселенной есть какой-нибудь другой объект. Все звезды и галактики, которые мы видим сейчас, исчезнут. Для нас во всей Вселенной останется только Солнечная система. Правда, Земля вряд ли доживет до этого, но об этом ниже.

Черные дыры наводнят Вселенную


40100

Когда нуклоны уйдут, главными субатомными частицами станут лептоны — электроны и позитроны. Они будут подпитывать черные дыры. Поглощая остатки вещества во Вселенной, черные дыры будут сами излучать частицы, которые будут наполнять Вселенную фотонами и гипотетическими гравитонами. Но и черным дырам суждено умереть, как решил Стивен Хокинг.

По мнению Хокинга, черные дыры испаряются из-за своего излучения. Излучая они теряют массу в форме энергии. Этот процесс занимает много времени, поэтому мы о нем практически ничего не знаем. Чтобы черная дыра полностью испарилась, должно пройти 1060 лет, поэтому этот процесс еще не протекал до конца на веку нашей Вселенной. Но, как мы уже сказали, в конце концов умрут и черные дыры. От них останутся лишь безмассовые частицы и несколько разрозненных лептонов, которые будут лениво взаимодействовать и терять свою энергию.

Можно ли сбежать от всего этого?

Самый многообещающий способ сбежать из нашей Вселенной с максимальной энтропией — использовать черные дыры, пока распад фотоны не сделает жизнь невозможной. Черные дыры остаются весьма загадочными объектами, но теоретики предлагают использовать их для выхода в новые вселенные.

Современная теория предполагает, что пузырьковые вселенные постоянно рождаются в нашей собственной Вселенной, образуя новые вселенные с материей и возможностью для жизни. Хокинг полагает, что черные дыры могут быть выходами в эти новые вселенные. Но есть одна проблема. Как только вы пересекаете границу черной дыры, пути назад нет. Поэтому если человечество решит отправиться в черную дыру, это будет поездка в один конец.

Для начала придется найти достаточно массивную вращающуюся черную дыру, чтобы пережить поездку через горизонт событий. Вопреки распространенному мнению, через массивные черные дыры безопаснее путешествовать. Космические путешественники будущего могут надеяться, что поездка не закончится плачевно, но никак не смогут связаться со своими друзьями по эту сторону черной дыры и сообщить им о результате. Каждая поездка будет прыжком веры.

Но есть способ убедиться, что по ту сторону нас ждет новая вселенная. По мнению Алана Гута, новорожденной Вселенной нужно всего 1089 протонов, 1089 электронов, 1089 позитронов, 1089 нейтрино, 1089 антинейтрино, 1079 протонов и 1079 нейтронов для старта. Может показаться, что это много, но в сумме это не больше кирпича.

Люди будущего могли бы произвести ложный вакуум — область пространства с потенциалом для расширения — с помощью сверхсильного гравитационного поля. В далеком будущем люди могли бы заполучить технологию для создания ложного вакуума и начать собственную вселенную. Поскольку изначальная инфляция вселенной длится долю секунды, новая вселенная расширится мгновенно и станет новым домом для людей. Быстрый прыжок через червоточину — и мы спасены.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector