Эволюция костюмов и образа брана старка в сериале игра престолов

Status

M-theory is not complete, but the mathematics of the approach has been explored in great detail. However, so far no experimental support of the M-theory exists. Some physicists are skeptical that this approach will ever lead to a physical theory describing our real world, due to fundamental issues.

Nevertheless, some cosmologists are drawn to M-theory because of its mathematical elegance and relative simplicity, triggering the hope that the simplicity is a reason why it may describe our world.

One feature of M-theory that has drawn great interest is that it naturally predicts the existence of the graviton, a spin-2 particle hypothesized to mediate the gravitational force; furthermore, M-theory naturally predicts a phenomenon that resembles black hole evaporation. Competing unification theories such as asymptotically safe gravity, E8 theory, noncommutative geometry, and causal fermion systems have not demonstrated any level of mathematical consistency. M-theory’s chief rival is loop quantum gravity, a non-unifying theory; many physicists consider loop quantum gravity to be less elegant than M-theory because it posits gravity to be completely different from the other fundamental forces.

Background

In the early years of the 20th century, the atom – long believed to be the smallest building-block of matter – was proven to consist of even smaller components called protons, neutrons and electrons, which are known as subatomic particles. Starting in the 1960s, other subatomic particles were discovered. In the 1970s, it was discovered that protons and neutrons (and other hadrons) are themselves made up of smaller particles called quarks. The Standard Model is the set of rules that describes the interactions of these particles.

In the 1980s, a new mathematical model of theoretical physics, called string theory, emerged. It showed how all the different subatomic particles known to science could be constructed by hypothetical one-dimensional «strings», infinitesimal building-blocks that have only the dimension of length, but not height or width.

However, for string theory to be mathematically consistent, the strings must be in a universe of ten dimensions. This contradicts the experience that our real universe has four dimensions: three space dimensions (height, width, and length) and one time dimension. To «save» their theory, string theorists therefore added the explanation that the additional six dimensions exist but cannot be detected directly; this was explained by sophisticated mathematical objects called Calabi–Yau manifolds. The number of dimensions was later increased to 11 based on various interpretations of the 10-dimensional theory that led to five partial theories, as described below. Supergravity theory also played a significant part in establishing the necessity of the 11th dimension.

These «strings» vibrate in multiple dimensions and, depending on how they vibrate, they might be seen in three-dimensional space as matter, light or gravity. It is the vibration of the string that determines whether it appears to be matter or energy, and every form of matter or energy is the result of the vibration of strings.

String theory as described above ran into a problem: another version of the equations was discovered, then another, and then another. Eventually, five major string theories were developed. The main differences between the theories were principally the number of dimensions in which the strings developed, and their characteristics (some were open loops, some were closed loops, etc.). Furthermore, all these theories appeared to be workable. Scientists were not comfortable with five seemingly contradictory sets of equations to describe the same thing.

Speaking at the string theory conference at the University of Southern California in 1995, Edward Witten of the Institute for Advanced Study suggested that the five different versions of string theory might be describing the same thing seen from different perspectives. He proposed a unifying theory called «M-theory», in which the «M» is not specifically defined but is generally understood to stand for «membrane». The words «matrix», «master», «mother», «monster», «mystery» and «magic» have also been claimed. M-theory brought all of the string theories together. It did this by asserting that strings are really one-dimensional slices of a two-dimensional membrane vibrating in 11-dimensional spacetime. Vibrations of higher-dimensional objects (as in three-dimensional vibrating blob or sphere or even more possible dimensions) are certainly a part of M-theory, but the basic theory of branes is still in progress. Higher-dimensional objects are much harder to mathematically calculate than a point in classical physics or a one-dimension string in string theory or two-dimensional membranes in M-theory.

М-теория

Оставалась еще одна проблема, которая не давала покоя теоретикам струн того времени. Тщательная классификация показала существование пяти различных последовательных теорий струн, и было непонятно, почему природа должна выбирать одну из пяти.

И здесь в игру вступает М-теория. Во время второй революции струн в 1995 году физики предположили, что пять последовательных теорий струн на деле являются разными лицами уникальной теории, которая существует в одиннадцати пространственно-временных измерениях и называется М-теорией. Она включает каждую струнную теорию различных физических контекстов, при этом оставаясь рабочей для всех. Эта невероятно увлекательная картина привела большинство теоретических физиков к идее, что М-теория станет теорией всего — и она также математически более последовательна, чем все остальные предлагаемые теории.

Как бы то ни было, пока что М-теория не смогла произвести прогнозы, которые могут быть проверены экспериментально. Суперсимметрия в настоящее время тестируется на Большом адронном коллайдере. Если бы ученые смогли найти признаки существования суперпартнеров, это окончательно укрепило бы позиции М-теории. Но современная теоретическая физика пока не в состоянии дать проверяемые прогнозы, а экспериментальная не может представить для этой проверки эксперименты.

Большинство великих физиков и космологов одержимы желанием найти это прекрасное и простое описание мира, которое могло бы объяснить все. И хотя мы пока далеки от этого, без гениальных и творческих людей вроде Хокинга это было бы и вовсе невозможно.

Очень большая энциклопедия

Другие измерения ещё не открыты, и существуют только в математических моделях. Но можно попробовать представить их так.

Как мы выяснили раньше, мы видим трёхмерную проекцию четвёртого (временного) измерения Вселенной. Другими словами, каждый момент существования нашего мира — это точка (аналогично нулевому измерению) на отрезке времени от Большого взрыва до Конца Света.

Те из вас, кто читал про перемещения во времени, знают какую важную роль в них играет искривление пространственно-временного континуума. Вот это и есть пятое измерение — именно в нём «сгибается» четырёхмерное пространство-время, чтобы сблизить две какие-то точки на этой прямой. Без этого путешествие между этими точками было бы слишком длительным, или вообще невозможным. Грубо говоря, пятое измерение аналогично второму — оно перемещает «одномерную» линию пространства-времени в «двумерную» плоскость со всеми вытекающими в виде возможности завернуть за угол.

Наши особо философско-настроенные читатели чуть ранее, наверное, задумались о возможности свободной воли в условиях, где будущее уже существует, но пока ещё не известно. Наука на этот вопрос отвечает так: вероятности. Будущее — это не палка, а целый веник из возможных вариантов развития событий. Какой из них осуществится — узнаем когда доберёмся.

Каждая из вероятностей существует в виде «одномерного» отрезка на «плоскости» пятого измерения. Как быстрее всего перескочить из одного отрезка на другой? Правильно — согнуть эту плоскость, как лист бумаги. Куда согнуть? И снова правильно — в шестом измерении, которое придаёт всей этой сложной структуре «объём». И, таким образом, делает её, подобно трёхмерному пространству, «законченной», новой точкой.

Седьмое измерение — это новая прямая, которая состоит из шестимерных «точек». Что представляет собой какая-либо другая точка на этой прямой? Весь бесконечный набор вариантов развития событий в другой вселенной, образованной не в результате Большого Взрыва, а в других условиях, и действующей по другим законам. То есть, седьмое измерение — это бусы из параллельных миров. Восьмое измерение собирает эти «прямые» в одну «плоскость». А девятое можно сравнить с книгой, которая уместила в себя все «листы» восьмого измерения. Это совокупность всех историй всех вселенных со всеми законами физики и всеми начальными условиями. Снова точка.

Тут мы упираемся в предел. Чтобы представить себе десятое измерение, нам нужна прямая. А какая может быть другая точка на этой прямой, если девятое измерение уже покрывает всё, что только можно себе представить, и даже то, что и представить невозможно? Получается, девятое измерение — это не очередная отправная точка, а финальная — для нашей фантазии, во всяком случае.

Теория струн утверждает, что именно в десятом измерении совершают свои колебания струны — базовые частицы, из которых состоит всё. Если десятое измерение содержит себе все вселенные и все возможности, то струны существуют везде и всё время. В смысле, каждая струна существует и в нашей вселенной, и любой другой. В любой момент времени. Сразу. Круто, да?  опубликовано econet.ru

Революция струн

Чтобы понять основную идею М-теории, нужно вернуться в 1970-е годы, когда ученые поняли, что вместо того, чтобы описывать вселенную, основываясь на точечных частицах, их лучше было бы описывать в виде осциллирующих струн (энергетических трубочек). Новый способ осмысления фундаментальных составляющих природы привел к решению многих теоретических проблем. Прежде всего, отдельное колебание струны можно интерпретировать как гравитон. И в отличие от стандартной теории гравитации, теория струн может описывать его взаимодействия математически и не получать странных бесконечностей. Значит, гравитацию можно будет включить в объединенную структуру.

После этого волнительного открытия физики-теоретики приложили много усилий, чтобы осознать его последствия. Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений. Сперва люди были озадачены тем, что она предсказывала существование частицы, которая движется быстрее света, так называемый «тахион». Это предсказание вошло в противоречие со всеми экспериментальными наблюдениями и бросило серьезную тень на теорию струн.

Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”. Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион. Этот первый успех широко известен как “первая струнная революция”.

Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений. В настоящее время нам известно лишь четыре: глубина, высота, ширина и время. Хотя это похоже на серьезное препятствие, предлагалось уже несколько решений, и в настоящее время это все видится скорее необычной особенностью, нежели проблемой.

Например, мы могли бы существовать в четырехмерном мире без какого-либо доступа к дополнительным измерениям. Либо же лишние измерения могли быть “компактными” и умещены в такие небольшие масштабы, что мы их не замечали бы. Однако различные компактификации привели бы к иным значениям физических констант и иным законам физики. Возможное решение состоит в том, что наша Вселенная лишь одна из многих в бесконечной “множественной вселенной”, управляемой разными физическими законами.

Похожее

Как представить 10 измерений
Как известно, человек живет в 3х измерениях — длина, ширина и высота. Исходя из «теории струн», во Вселенной существует 10 измерений, первые шесть из которых между собой связаны. На данном видео рассказывается про все эти измерения, включая 4 последних, в рамках представлений о Вселенной.

Физика невозможного
Мичио Каку

Еще совсем недавно нам трудно было даже вообразить сегодняшний мир привычных вещей. Какие смелые прогнозы писателей-фантастов и авторов фильмов о будущем имеют шанс сбыться у нас на глазах? На этот вопрос пытается ответить Митио Каку, американский физик японского происхождения и один из авторов теории струн. Рассказывая простым языком о самых сложных явлениях и новейших достижениях современной науки и техники, он стремится объяснить основные законы Вселенной.

Дэвид Гросс: «Держу пари, что суперсимметрия будет открыта»
В мае Москву посетил Нобелевский лауреат по физике 2004 года Дэвид Гросс. Он приехал по приглашению фонда «Династия» и Международного центра фундаментальной физики, чтобы прочитать публичную лекцию о теории струн и грядущих революциях в теоретической физике. Перед лекцией Дэвид Гросс любезно согласился ответить на вопросы сайта «Элементы».

Параллельные миры
Мичио Каку

Эта книга, конечно же, не развлекательное чтение. Это то, что называется «интеллектуальный бестселлер». Чем, собственно, занимается современная физика? Какова нынешняя модель Вселенной? Как понимать «многомерность» пространства и времени? Что такое параллельные миры? Насколько эти понятия как объект исследования науки отличаются от религиозно-эзотерических идей?

Бесконечно ли всемогущество теории суперструн?
Ключевая проблема в теории суперструн — выяснить, конечно или бесконечно число «вселенных», которые она может описать. В недавно вышедшей статье делается попытка доказать, что это число конечно.

Десять великих идей науки. Как устроен наш мир
Питер Эткинз

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе

Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Грядущие революции в фундаментальной физике
Дэвид Гросс
Сегодня мы поговорим о теории струн. Прежде всего, я представлю мотивацию столь дерзкой попытки связать воедино все силы природы

Затем мы обсудим базовую структуру теории струн, преподнесенные ею сюрпризы, достигнутые с ее помощью успехи и пока еще не сбывшиеся обещания. И наконец, я обсужу с вами грядущие перевороты в фундаментальной физике, предполагаемые теорией струн.

Истина и красота. Всемирная история симметрии
Иэн Стюарт

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.

Структура Реальности
Дэвид Дойч

Книга известного американского специалиста по квантовой теории и квантовым вычислениям Д.Дойча фактически представляет новую всеобъемлющую точку зрения на мир, которая основывается на четырех наиболее глубоких научных теориях: квантовой физике и ее интерпретации с точки зрения множественности миров, эволюционной теории Дарвина, теории вычислений (в том числе квантовых), теории познания.

Мир многих миров. Физики в поисках иных вселенных
Александр Виленкин

Физик, профессор Университета Тафтса (США) Алекс Виленкин знакомит читателя с последними научными достижениями в сфере космологии и излагает собственную теорию, доказывающую возможность — и, более того, вероятность — существования бесчисленных параллельных вселенных. Выводы из его гипотезы ошеломляют: за границами нашего мира раскинулось множество других миров, похожих на наш или принципиально иных, населенных невообразимыми созданиями или существами, неотличимыми от людей.

Далее >>>

Фильмография

Актёр

Год На русском На языке оригинала Роль
Огненные колесницы Chariots of Fire художник
Пасха 2016 / ТВ Easter 2016 студент
На маяк / ТВ To the Lighthouse Чарльз Тэнсли
Выход из положения Coming Through Д. Х. Лоуренс
Призраки / ТВ Ghosts Освальд
Леди не для сожжения / ТВ The Lady’s Not for Burning Томас Мендип
Месяц в деревне A Month in the Country Джеймс Мун
В разгар лета High Season Рик
Странная интерлюдия / ТВ Strange Interlude Гордон Эванс
Оглянись во гневе / ТВ Look Back in Anger Джимми Портер
Генрих V Henry V Генрих V
Умереть заново Dead Again Роман Штраус
Друзья Питера Peter’s Friends Эндрю Бенсон
Свингеры Swing Kids Герр Нопп
Много шума из ничего Much Ado About Nothing Бенедикт
Франкенштейн Мэри Шелли Frankenstein Виктор Франкенштейн
Тень стрелка / ТВ Shadow of a Gunman Донал Даворен
Отелло Othello Яго
Гамлет Hamlet Гамлет
Леший The Gingerbread Man Рик Магрудер
Предложение The Proposition отец Майкл Маккиннон
Знаменитость Celebrity Ли Саймон
Теория полёта The Theory of Flight Ричард
Танец Шивы The Dance of Shiva полковник Эванс
Мастер париков The Periwig-Maker Мастер париков
Дикий, дикий Вест Wild Wild West доктор Арлисс Лавлесс
Тщетные усилия любви Love’s Labour’s Lost Бероун
Дорога на Эльдорадо The Road to El Dorado Мигель (голос)
Как убить соседскую собаку? How to Kill Your Neighbor’s Dog Питер Макгоуэн
Наука Большого Эла / ТВ The Science of Big Al рассказчик (голос)
Заговор / ТВ Conspiracy Рейнхард Гейдрих
Вторая стадия Шнайдера Schneider’s 2nd Stage Джозеф Барнетт
Любовный треугольник по-инопланетянски Alien Love Triangle Стивен Честермен
Шеклтон / ТВ Shackleton сэр Эрнест Генри Шеклтон
Клетка для кроликов Rabbit-Proof Fence А. О. Невилл
Гарри Поттер и Тайная комната Harry Potter and the Chamber of Secrets Профессор Локонс
Пять детей и волшебство Five Children and It дядя Альберт
Тёплые источники / ТВ Warm Springs Франклин Делано Рузвельт
Валландер / ТВ Wallander инспектор Курт Валландер
Операция «Валькирия» Valkyrie Хеннинг фон Тресков
Рок-волна The Boat That Rocked сэр Алистер Дорманди
7 дней и ночей с Мэрилин My Week with Marilyn Лоренс Оливье
Джек Райан: Теория хаоса Jack Ryan: Shadow Recruit Виктор Черевин
Дюнкерк Dunkirk коммандер Болтон
Убийство в «Восточном экспрессе» Murder on the Orient Express Эркюль Пуаро

Режиссёр

  •  — Генрих V / Henry V
  •  — Умереть заново / Dead Again
  •  — Лебединая песнь / Swan Song
  •  — Друзья Питера / Peter’s Friends
  •  — Много шума из ничего / Much Ado About Nothing
  •  — Франкенштейн Мэри Шелли / Frankenstein
  •  — Зимняя сказка / In the Bleak Midwinter
  •  — Гамлет / Hamlet
  •  — Тщетные усилия любви / Love’s Labour’s Lost
  •  — Слушание / Listening
  •  — Как вам это понравится / As You Like It
  •  — Волшебная флейта / The Magic Flute
  •  — Сыщик / Sleuth
  •  — Тор / Thor
  •  — Джек Райан: Теория хаоса / Jack Ryan: Shadow Recruit
  •  — Золушка / Cinderella
  •  — Убийство в «Восточном экспрессе» / Murder on the Orient Express

Ранние годы

Кеннет Брана родился 10 декабря 1960 года в Белфасте, столице Северной Ирландии, в семье протестанта Уильяма Брана, плотника по профессии, и его жены Фрэнсис. В 1970 году Брана переехал вместе с родителями в город Рединг на юге Англии, где девятилетнему Кеннету, чтобы избежать насмешек в школе, пришлось избавиться от ирландского акцента.

Он получил образование в «Grove Primary School», «Whiteknights Primary School», «Meadway School», где он появился в некоторых школьных постановках. В возрасте восемнадцати лет он поступил в Королевскую академию драматического искусства, и, окончив её в 1981 году, получил Золотую медаль Бэнкрофта — награду за блестящие успехи в обучении.

Тикают часики

Время добавляет к нашей Вселенной ещё одну координату. Для того, чтобы вечеринка состоялась, нужно знать не только в каком баре она произойдёт, но и точное время этого события.

Исходя из нашего восприятия, время — это не столько прямая, как луч. То есть, у него есть отправная точка, а движение осуществляется только в одном направлении — из прошлого в будущее. Причём реально только настоящее. Ни прошлое, ни будущее не существуют, как не существуют завтраки и ужины с точки зрения офисного клерка в обеденный перерыв.

Но теория относительности с этим не согласна. С её точки зрения, время — это полноценное измерение. Все события, которые существовали, существуют и будут существовать, одинаково реальны, как реален морской пляж, независимо от того, где именно мечты о шуме прибоя захватили нас врасплох. Наше восприятие — это всего лишь что-то вроде прожектора, который освещает на прямой времени какой-то отрезок. Человечество в его четвёртом измерении выглядит приблизительно так:

Но мы видим только проекцию, срез этого измерения в каждый отдельный момент времени. Да-да, как брокколи в аппарате МРТ.

До сих пор все теории работали с большим количеством пространственных измерений, а временное всегда было единственным. Но почему пространство допускает появление множественных размерностей для пространства, но время только одно? Пока учёные не смогут ответить на этот вопрос, гипотеза о двух или более временных пространствах будет казаться очень привлекательной всем философам и фантастам. Да и физикам, чего уж там. Скажем, американский астрофизик Ицхак Барс корнем всех бед с Теорией Всего видит как раз упущенное из виду второе временное измерение. В качестве умственного упражнения, попробуем представить себе мир с двумя временами.

Каждое измерение существует отдельно. Это выражается в том, что если мы меняем координаты объекта в одной размерности, координаты в других могут оставаться неизменными. Так, если вы движетесь по одной временной оси, которая пересекает другую под прямым углом, то в точке пересечения время вокруг остановится. На практике это будет выглядеть приблизительно так:

Всё, что Нео нужно было сделать — это разместить свою одномерную временную ось перпендикулярно временной оси пуль. Сущий пустяк, согласитесь. На самом деле всё намного сложнее.

Точное время во вселенной с двумя временными измерениями будет определяться двумя значениями. Слабо представить себе двумерное событие? То есть, такое, которое протяжённо одновременно по двум временным осям? Вполне вероятно, что в таком мире потребуются специалисты по составлению карты времени, как картографы составляют карты двухмерной поверхности земного шара.

Что ещё отличает двумерное пространство от одномерного? Возможность обходить препятствие, например. Это уже совсем за границами нашего разума. Житель одномерного мира не может представить себе как это — завернуть за угол. Да и что это такое — угол во времени? Кроме того, в двумерном пространстве можно путешествовать вперёд, назад, да хоть по диагонали. Я без понятия как это — пройти через время по диагонали. Я уж не говорю о том, что время лежит в основе многих физических законов, и как изменится физика Вселенной с появлением ещё одного временного измерения, невозможно представить. Но размышлять об этом так увлекательно!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector