Мкс. как живут на орбите люди?

Кислородный запас

Когда проблема очистки воздуха решена, дело остается за малым: регулярно восполнять расход кислорода. В капсуле «Меркурий», первом американском космическом корабле, кислород добавлялся из газового баллона по сигналу датчика парциального давления. Аналогично обеспечивалась и орбитальная станция «Скайлэб», на борту которой в сжатом виде хранилось более 2 тонн кислорода и 600 килограммов азота в баллонах под давлением почти 210 атмосфер.

А вот на кораблях «Джемини» и «Аполлон» был применен иной подход к обеспечению кислородом. Его хранили в жидком виде и подавали для дыхания через контур газификации. Одновременно кислород использовался в топливных элементах для выработки электроэнергии в прямой реакции с водородом. Так же устроено снабжение кислородом и на космических челноках «Спейс шаттл». У них нет солнечных батарей, так что кислород нужен не только для дыхания экипажа, но и для работы электрооборудования. Его запас в значительной мере определяет возможную продолжительность полета.

Прямо противоположный подход применяется на МКС. Здесь высокая мощность солнечных батарей делает оправданным обратный процесс: электролизер «Электрон» разлагает техническую воду на кислород, пополняющий атмосферу станции, и водород, который сбрасывается за борт. Правда, такая система оказалась не слишком надежной. В 2005 году на МКС возникли неполадки с «Электроном», и российские космонавты были вынуждены сжигать так называемые кислородные шашки. Это устройства, представляющие собой канистру с пер хлоратом лития и железным порошком, которые при медленном горении выделяют газообразный кислород. По количеству запасенного кислорода на единицу массы шашки существенно эффективнее баллонов со сжатым воздухом, но при их использовании нельзя регулировать приток кислорода. Кроме того, срок их хранения ограничен.

Зачем нам азот

Наряду с поддержанием давления СОЖ должна обеспечить нужный химический состав атмосферы. В ней для жизненных функций организма важнее всего парциальные давления кислорода и углекислого газа, а количество азота роли не играет. Это позволяет довольно гибко варьировать газовый состав воздуха и давление на борту космических аппаратов.

На советских (и впоследствии российских) космических кораблях всегда применялась атмосфера, близкая по составу и давлению к земной. Американцы в первых пилотируемых системах 1960–1970 годов — «Меркурий», «Джемини» и «Аполлон» — использовали атмосферу из чистого кислорода. Давление при этом составляло лишь 35–38% от нормального. Отказ от ненужного для дыхания азота сокращает массу запасов воздуха, упрощает СОЖ и, главное, благодаря снижению давления позволяет уменьшить толщину стенок, а с ней и массу обитаемых отсеков.

Однако именно кислородная атмосфера стала причиной гибели экипажа «Аполлона-1» 27 января 1967 года. В тот день астронавты Эдвард Уайт, Вирджил Гриссом и Роджер Чаффи проводили наземные испытания. К этому времени конструкция корабля еще не была «доведена до ума», многие электрические кабели даже не были толком заизолированы, из негерметичных трубопроводов системы терморегулирования постоянно утекала пожароопасная жидкость этиленгликоль. Внезапно в командном отсеке, где находились все три члена экипажа, произошло короткое замыкание и начался пожар. Электропроводка и горючие материалы в кислородной атмосфере мгновенно вспыхнули. Спустя несколько секунд экипаж был уже мертв — астронавты отравились токсичными продуктами горения.

Разработчики не без оснований полагали, что при низком давлении риск пожара будет минимальным. Но при наземных испытаниях командный отсек заполнялся чистым кислородом при нормальном атмосферном давлении — иначе оболочку просто смяло бы, как пустую консервную банку. Проверенные ранее материалы, которые не должны были гореть в условиях полета, при давлении кислорода втрое выше расчетного, вдруг вспыхнули… В дальнейшем, при тренировках и перед стартом, корабль стали заполнять смесью кислорода (60%) и азота (40%) при нормальном давлении. При выведении на орбиту она заменялась атмосферой, состоявшей на 98% из кислорода и только на 2% из азота, но давление при этом снижалось втрое. Правда, на станции «Скайлэб» американцы, не меняя давления, заменили четверть кислорода азотом, главным образом чтобы снизить пожароопасность.

Еда и напитки на орбите

Как вы думаете, что люди едят в космосе? Орбитальная станция не похожа на Землю, где вы можете найти магазин очень близко к дому. И получать свежие продукты каждый день. На борту МКС люди питаются продуктами с Земли, которые доставляют с помощью специальных грузовых кораблей. Пища поставляется в мешках и банках, и большая ее часть обезвоживается, чтобы сделать ее легче.

А откуда берется вода? Воду с Земли доставлять очень дорого, поэтому на борту МКС каждая капля воды перерабатывается. Каждый выдох, каждая капля пота, вода для душа и моча перерабатываются обратно в питьевую воду.

Вода в космосе не течет, как вода на Земле. Он находится в воздухе в виде пузыря. Поэтому, чтобы выпить немного воды или вымыть лицо, нужно приспосабливаться.

Малые гравитационные формы

Ещё в XVIIIвеке дед Чарльза Дарвина обнаружил, что, посадив человека на аналог круглых качелей и раскручивая их, можно добиться скорости, при которой он почувствует приличное ускорение. В 1933 году Германия — научно-технический лидер тогдашнего мира — создала первую центрифугу для изучения влияния искусственной гравитации на человека. При размере всего в 2,7 метра она могла дать до 15 g. Если нам нужна в пятнадцать раз меньшая сила тяжести, центрифугу можно сделать такой, как у Института медико-биологических проблем,чтобы её вращение не было утомительно быстрым.

Как ни странно, такие устройства были бы полезны не только космонавтам. Тело человека рассчитано на огромную мобильность: его предки пробегали десятки километров в день, а письменные источники фиксируют и случаи с сотнями километров в сутки. Заставить цивилизованных потомков заниматься спортом нереально, поэтому у нас вечные проблемы с сосудами ног, да и их переломы заживают медленнее, чем могут. Пребывание в условиях повышенной гравитации полезно и при лечении сосудов нижних конечностей, и при ускорении регенерации костных тканей после переломов. Исследуется и эффективность центрифуг при лечении гипертонической болезни. Таким образом, перед нами типичный случай, когда космические технологии вполне могут принести большую пользу и на Земле.

В компактном варианте, показанном выше, центрифугу малого радиуса можно использовать не только для периодических тренировок в «тренажёрном зале» орбитальной станции, но и для сна. Вам кажется, что на вращающейся платформе вряд ли уснёшь? Вовсе нет: тот же дед Дарвина успешно использовал её, чтобы вызвать сон у лиц с сомнологическими расстройствами. В случае, если космонавты будут проводить там по восемь часов в сутки, о «гравитационных» проблемах на космических кораблях можно забыть как минимум до эпохи межзвёздных перелётов.

Конечно, слишком маленькой центрифугу в космосе лучше не делать, иначе сила тяжести на уровне головы будет существенно ниже, чем на уровне ног. Только эксперименты помогут выяснить, правильные ли размеры для неё подобрали в Роскосмосе, а значит, эти эксперименты на орбите просто неизбежны. Пока Россия здесь делает только первые шаги — даже двигатель для центрифуги на видео выше пришлось покупать в Австрии, поскольку в нашей стране таких пока не делают. И тем не менее весь этот проект вполне реален.

Более чем десятилетие назад NASA задумало создать на МКС свой спецмодуль для центрифуги, однако из-за использования Агентством для сборки МКС безумно дорогих шаттлов проект «не взлетел» по финансовым ограничениям (хотя модуль для него уже был создан). И вот теперь, как ни странно, Роскосмос может стать первой в мире организацией, которая вытащит аппарат «искусственной гравитации» в космос и опробует его на людях. Для снижения затрат на доставку  на орбиту спецмодуля для размещения центрифуги, его сделают надувным (точнее, газоразвертываемым). Тогда на «завоз» всех нужных узлов уйдёт не так уж много рейсов.

Что это обещает в ближайшем будущем? Пока не так много: первые полёты к Марсу будут слишком ограничены по массе полезной нагрузки. Даже весьма нужная центрифуга на корабль вряд ли поместится. Гораздо лучше с полезной нагрузкой в варианте ядерного буксира. Но тот будет лететь к Марсу так недолго, что смысл создания там «гравиубежища» неясен. И всё же, как мы отмечали выше, четвёртой планетой Солнечная система не заканчивается, так что за центрифугами короткого радиуса, скорее всего, будущее пилотируемой космонавтики.

Материалы по теме:

Запугиваете?

Нам скажут: вы нагнетаете. В самом деле, полёт к Марсу даже на химических двигателях продлится всего полгода. Ещё по станции «Мир» хорошо известно, что и после года в космосе космонавт, работающий с тренажером, вполне может сам дойти до автобуса несмотря на 1 g (силы тяжести, действующей на единицу массы). На том же Марсе всего 0,38 g, о чём разговор? Да, путешествие на Красную планету — это минимум год при пониженной гравитации на ней, и ещё полгода на возвращение. Но и при этом «дефицита тяжести» люди испытают ничуть не больше, чем Валерий Поляков, который после своих рекордно долгих полётов успешно работал на Земле, не утратив ни зрения, ни подвижности.

И всё же повод для беспокойства есть. Марсом Солнечная система не кончается. Чтобы слетать к Церере с её подповерхностным океаном (где не исключено наличие жизни), топлива надо даже меньше, чем для полета к Луне. Но вот по времени туда лететь куда дальше, чем к Марсу. Так что, пока Роскосмос не сделает полномасштабный ядерный буксир, освоение действительно далёких от Земли небесных тел под большим вопросом.

Как производить кислород в космосе?

Дефицит кислорода является одним из самых главных препятствий в освоении дальнего космоса

Земля – это единственное место, где объемы этого газа достаточны для выживания человечества, но необходимость брать с собой большие запасы этого важного для жизни элемента в дальние космические полеты будет очень затратной и непосильной задачей. Например, на той же Международной космической станции запаса кислорода восполняются за счет электролиза воды (разложения ее на водород и кислород)

Этим на МКС занимается система «Электрон», расходующая 1 кг воды на человека в сутки. Запасы кислорода также время от времени пополняются в ходе грузовых миссий к орбитальной станции. Есть мнение, что когда начнется терраформирование Марса, электролиз станет одним из способов добычи кислорода для марсианских колонистов, однако технологий таких у человечества пока нет, поэтому думать об этом рано.

Поэтому ученые из Калтеха решили найти в рамках своего исследования иной метод производства кислорода. В итоге они пришли к созданию реактора, который, если говорить простыми словами, берет и удаляет из формулы «CO2» (диоксида углерода) «С» (углерод), оставляя только кислород. Исследователи обнаружили, что если разгонять и ударять молекулы диоксида углерода об инертные поверхности, такие как золотая фольга, то их можно расщепить на молекулярный кислород и атомарный углерод.

Ученые говорят, что их реактор работает по принципу ускорителя частиц. Сперва молекулы CO2 в нем ионизируются, а затем ускоряются с помощью электромагнитного поля, после чего сталкиваются с золотой поверхность. В текущей форме установка обладает весьма низким КПД: на каждые 100 молекул CO2 она способна производить порядка одной-двух молекул молекулярного кислорода

Однако исследователи обращают внимание на то, что их реактор доказал, что данный концепт производства кислорода действительно возможен и в будущем может стать масштабируемым

Исследователи поясняют, что подобная реакция производства кислорода в космосе может происходить и естественным образом. Разработка концепта началась с попытки объяснить неожиданное открытие молекулярного кислорода на кометах. После того, как космический аппарат «Розетта» обнаружили газ, вырывающийся с поверхности кометы 67P/Чурюмова — Герасименко, ученые изначально предположили, что этот кислород находился в ней замороженном состоянии миллиарды лет, фактически со времен формирования Солнечной системы, то есть в течение примерно 4,6 миллиарда лет. Но эта гипотеза оставалась до сих пор весьма спорной, поскольку такой «замороженный» молекулярный кислород должен был обладать весьма высоким химическим потенциалом и вступать во взаимодействия с другими компонентами вещества кометы, согласно мнению ряда ученых.

Однако в 2017 году команда Колтеха предложила другое объяснение

Профессор Калифорнийского технологического института и специалист по молекулярному инжинирингу Константинос Гиапис обратил внимание на химические реакции, протекающие на поверхности кометы 67P/Чурюмова — Герасименко, поскольку они показались ему весьма похожими на те реакции, которые он изучал в лаборатории на протяжении свыше 20 лет. Ученый предположил, что хорошо изученный им механизм, состоящий в том, что атомарный кислород вещества кометы превращается в молекулярный кислород под действием бомбардирующих поверхность молекул воды, также содержащих один атом кислорода, хорошо применим в сфере астрофизики для объяснения данных, полученных учеными миссии «Розетта»

Это и вдохновило ученых на разработку реактора.

Вода и пища

Важнейшими после дыхания потребностями человека являются питье и еда. По российским нормативам для нормальной работоспособности космонавт должен получать в сутки 2,2 литра воды, из которых около 0,75 литра используются для питья. У американских астронавтов норма расхода воды больше — примерно 3,6 литра. Для питья у каждого члена экипажа есть индивидуальный мундштук, который насаживается на шприцы разветвленной бортовой системы водоснабжения «Родник». На них же надеваются тюбики с сублимированной пищей. На МКС воду доставляют в основном грузовыми рейсами «Прогрессов» и «Шаттлов», а в последнее время еще и европейскими транспортными кораблями «Жюль Верн».

Космические продукты. На пакете с сублимированным протертым шпинатом (вверху справа) виден клапан для воды. Фото: NASA

Воду также получают в результате работы кислородно-водородных топливных элементов. Но из-за большого количества растворенных газов ее используют только для технических, в частности гигиенических нужд. На станциях «Салют» и «Мир» техническая вода добывалась из конденсата атмосферной влаги и мочи космонавтов, чем достигалась почти полная замкнутость системы водоснабжения. Это, в частности, позволило оборудовать станции душевой кабинкой из полимерной пленки, в которую вода подавалась под давлением через распылитель. На МКС контур «по воде» разомкнут: ее отходы сливают в опустевшие водяные баки «Прогрессов» и более не используют. Душа здесь нет, и экипаж «моется всухую», обтираясь влажными салфетками. Связано это не только с экономией воды, но и с большой длительностью и трудоемкостью принятия душа в невесомости. Достаточно сказать, что, прежде чем выйти из кабинки, космонавт должен был специальным отсасывающим устройством тщательно собрать внутри все капли воды. По той же причине экономии времени космонавты не стирают одежду на борту, а просто периодически берут новый комплект.

Что касается еды, то нормой считается суточное потребление примерно 500–600 граммов пищи (в пересчете на сухую массу) при калорийности 2500–2700 килокалорий. Для экипажей «Салютов» продукты питания упаковывались в 100-граммовые консервные банки и алюминиевые тубы по 165 грамммов. Сухие (сублимированные) соки и кофе расфасовывались в пленочные пакеты. Для приготовления пищи и напитков имелся специальный проточный блок подогрева воды. Сейчас пища экипажа МКС более разнообразна. В нее входят как обезвоженные, так и готовые продукты. Свежие овощи и фрукты на борту станции тоже бывают, но нечасто — только при визитах «Прогрессов» и «Шаттлов».

Жизнь везде

Сегодня мы знаем, что воздействие астероидов и комет на планеты, имеющие жизнь, может привести не только к исчезновению видов. Например, как это случилось с динозаврами.  Но может привести к выбросу материала, содержащего жизнь, в космическое пространство. И этот материал, в принципе, может достичь соседних планет. Поэтому нам не нужно будет сильно удивляться, когда на Марсе вдруг обнаружатся самые обыкновенные земные метаногены. Совершенно очевидно, что жизнь не может рассматриваться как уникальное явление, которое есть только на Земле. То, что жизнь есть на Земле, означает лишь, что жизнь есть везде. Таким образом вся наша Галактика, наша звездная система Млечный Путь, вполне может рассматриваться как одна гигантская биосфера. Жизнь всех известных на Земле типов и форм, от бактерий до растений, животных и даже человека, должна, с высокой степенью вероятности, быть всеобъемлющим явлением. Это не просто теория. А неизбежный факт.

Рассказать всей Вселенной!

Невесомость

МКС обеспечивает безопасную среду обитания для людей в космосе. Однако жизнь там очень отличается от жизни на Земле. Люди в космосе испытывают то, что часто называют «невесомостью». В действительности, гравитация там лишь немного слабее, чем гравитация на Земле. (Вот некоторые цифры: гравитационное ускорение g на уровне моря составляет около 9,8 м/с2. Если вы рассчитаете его на высоте 400 км над землей, он будет только на 10% меньше). Это означает, что МКС все же испытывает гравитационное притяжение нашей планеты. Но поскольку она находится в постоянном «свободном падении» на Землю, люди внутри станции испытывают состояние невесомости. Невесомость возникает, когда тело (в данном случае МКС) свободно падает, устремляясь вниз под действием силы тяжести. При этом силы, действующие на падающее тело уравновешиваются. Поэтому все, что находится внутри МКС имеют никакого веса – сила тяжести на них не действует.

Космическая сантехника

Так уж получилось, что человеческий организм должен время от времени избавляться от продуктов жизнедеятельности, в том числе и в космосе. В сутки здоровый человек выделяет в среднем 1,5 литра жидких и около 250 граммов твердых отходов. На Земле эта надобность, о которой обычно не говорят вслух, отправляется достаточно просто (разве что общественных туалетов всегда не хватает), но в космосе это настоящая проблема. В невесомости, если не принять специальных мер, отходы жизнедеятельности попросту разлетятся по всему объему орбитальной станции. Что, надо признать, не просто неприятно, но еще и вредно, и даже опасно…

На заре космонавтики, когда полеты были короткими и выполнялись, как правило, в скафандрах, первые устройства для сбора твердых и жидких отходов представляли собой эластичные трусы со сменными гигроскопическими прокладками — предтечами всем известных памперсов. Современное космическое ассенизационное устройство внешне напоминает туалет самолета или поезда, но имеет гораздо более сложное устройство. Этот туалет снабжен фиксаторами для ног и держателями для бедер (что делать — невесомость). Специальный вентилятор засасывает отходы в предназначенную для них емкость.

Мочу, собираемую в 20-литровые канистры, консервируют — с помощью раствора серной кислоты — и позднее перекачивают в освободившиеся баки для воды корабля «Прогресс». Твердые отходы размещаются в индивидуальных пакетах, хранящихся в алюминиевых контейнерах, которые также помещают в очередной «Прогресс», предварительно освобожденный от грузов. Отделившийся от станции корабль сжигает «продукт вторичный» в атмосфере, когда сходит с орбиты. Раньше на станциях «Салют» и «Мир» гермоконтейнеры с отходами просто периодически выбрасывались в космос через шлюз и сгорали в атмосфере самостоятельно.

Ассенизационное устройство капризно, особенно если использовать его слишком часто. К примеру, на МКС пока установлен единственный туалет — на российском модуле «Звезда». И когда в мае 2008 года он вышел из строя, экипажу пришлось пользоваться ассенизационным устройством корабля «Союз». К счастью, челнок «Дискавери» доставил в июне специальные контейнеры, а экипаж, исполнив роль «космических сантехников», смог починить туалет. Но полностью проблема будет решена только после монтажа на МКС еще одного туалета, изготовленного в России по заказу NASA за 19 миллионов долларов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector