Поршневой авиационный двигатель (мотор) внутреннего сгорания: устройство и принцип работы

Влияние ДВС на экологию, экологические требования к конструкции ДВС

В таких вариантах ДВС, как газотурбинные и реактивные, сгорание организовано непрерывно, причём максимальная температура меньше. Поэтому они имеют обычно меньшие выбросы недогоревших углеводородов (по причине меньшей зоны гашения пламени и длительности сгорания) и выбросы окислов азота (по причине меньшей максимальной температуры). Температура в таких двигателях ограничена теплостойкостью лопаток, сопел, направляющих, и для транспортных двигателей составляет 800..1200 оС. Улучшения экологических показателей, например, ракет, достигают обычно подбором топлив (например, вместо НДМГ и перекиси азота применяют жидкие кислород и водород).

Однако, сотни миллионов регулярно используемых транспортных поршневых двигателей, потребляя ежедневно огромное количество нефтепродуктов, дают в сумме большие вредные выбросы. Их разделяют на углеводороды (CH), окись углерода (CO), и окислы азота (NOx). Также ранее использовали этилированный бензин, продукты сгорания которого содержали практически не выводимый из организма человека свинец. Наиболее это сказывается в крупных городах, расположенных в низинах и окруженных возвышенностями: при безветрии в них образуется смог. В настоящее время нормируются не только вредные выбросы, но также выделение транспортным средством углекислого газа и воды (в связи с влиянием на климат).

В первые десятилетия развития автотранспорта этому не уделялось достаточное внимание, поскольку автомобилей было меньше. В дальнейшем производителей обязали соблюдать определённые нормы выбросов, причём с годами они становятся всё строже

Для уменьшения выбросов в принципе возможны три способа:

  1. Выбор экологически чистого топлива (водород, природный газ) или улучшение традиционного жидкого (бензин и дизтопливо «Евро-5»).
  2. Изменение параметров цикла двигателя или разработка новых (снижение степени сжатия, расслоение заряда, внутрицилиндровый впрыск, системы компьютерного управления с использованием датчиков кислорода, система Common rail на дизелях, и др.).
  3. Снижение содержания вредных выбросов с использованием термических (ранее) и каталитических (в настоящее время) нейтрализаторов.

Существующие нормы токсичности в развитых странах требуют обычно применения нескольких способов сразу. При этом обычно ухудшается топливная экономичность как автомобилей, так и всего транспортного (включая нефтеперегонные заводы) комплекса, поскольку оптимумы циклов по экономичности и экологичности у двигателей обычно не совпадают, а изготовление высокоэкологичного топлива требует больше энергии.

В последнее время высказываются серьёзные опасения в отношении дальнейшего применения двигателей на ископаемом топливе (большинство ДВС), в связи с проблемой глобального потепления.

Конструктивные особенности поршневых двигателей

Авиационные поршневые двигатели имеют большое число цилиндров (от 5 до 24), хорошие экономические характеристики, способны работать в перевёрнутом состоянии и обладают большей надёжностью.

Способ охлаждения – воздушное, или жидкостное — определяет конструкцию двигателя.

В двигателях с жидкостным охлаждением цилиндры объединяют по 4-6 штук в блоки (ряды), они имеют общую рубашку, внутри которой циркулирует охлаждающая жидкость. В одном двигателе может быть несколько (2, 4 или 6) блоков, размещаемых вдоль оси двигателя.

В двигателях с воздушным охлаждением цилиндры располагают в плоскости, перпендикулярной оси двигателя, по 5-9 штук; вместе эти цилиндры напоминают звезду. У мощных двигателей могло быть до четырех звёзд (до 20-24 цилиндров). Цилиндры охлаждаются потоком встречного воздуха, для более эффективного охлаждения наружная поверхность корпусов цилиндров делается ребристой.

Помимо звездообразных двигателей, нашли свое применение в авиастроении и оппозитные двигатели. Их часто устанавливают на легкие и небольшие самолеты, так как их мощности вполне достаточно для полета на высоких скоростях.

Оппозитный поршневой двигатель П-020

К 1942 году поршневые моторы практически исчерпали свои возможности. Пропеллеры по своей конструкции так же достигли высшей точки эффективности. Увеличение числа цилиндров, применение нагнетателей, сложных систем впрыска воды, спирта или химикатов в топливо усложняло конструкцию и давало лишь небольшой эффект.

***

Одним из наиболее удивительных поршневых авиадвигателей, изготовленных во время Второй мировой войны, был американской опытный звездообразный двигатель жидкостного охлаждения «Райт R-2160 Торнадо», в котором 42 цилиндра располагались в семь рядов в шести радиальных блоках. По замыслу конструкторов, «Торнадо», имевший небольшой диаметр, позволял авиаконструкторам разрабатывать фюзеляжи с небольшим поперечным сечением.

Однако «Торнадо» требовалась довольно тяжелая и сложная система радиаторов охлаждающей жидкости, которая сводила на нет любое аэродинамическое преимущество от малого поперечного сечения двигателя.

Котельников В. Р., Хробыстова О. В., Зрелов В. А., Пономарёв В. А. Двигатели боевых самолетов России /Под общ. ред. В. В. Горошникова. — Рыбинск : Медиарост, 2017. -616 с.: илл.

  1. Jean Joseph Etienne Lenoir (1822-1900). []
  2. В настоящее время — Запорожье. []
  3. Лидером в разработке авиационных двигателей с жидкостным охлаждением была Германия []
  4. В постройке двигателей с воздушным охлаждением лидером была Франция []
  5. Поршневой ДВС, в котором угол между рядами цилиндров составляет 180 градусов, а противостоящие поршни двигаются зеркально по отношению друг к другу и одновременно достигают верхней мёртвой точки. []
  6. Пропеллер, или винт проектируется под конкретный двигатель. []

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Комбинированный двигатель внутреннего сгорания

Турбонагнетание

Наиболее распространённым типом комбинированных двигателей является поршневой с турбонагнетателем.
Турбонагнетатель или турбокомпрессор (ТК, ТН) — это нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала.

Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На валу, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет нагнетать воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем воздуха (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.

На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, поскольку тому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.

Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры или при использованием турбины с изменяемой геометрией, в автоспорте также применяется принудительный разгон турбины с помощью системы рекуперации энергии). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).

Примечания

  1. . bigenc.ru. Дата обращения 16 февраля 2019.
  2. . rus-eng.org. Дата обращения 16 февраля 2019.
  3. В. М. Корнеев. Особенности конструкции газотурбинных двигателей. — Ridero, 2018. — ISBN 978-5-4485-9499-1.
  4. Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  5. Александр Грек. Человек, который купил космодром // Популярная механика. — 2017. — № 11. — С. 54.
  6. . Популярная механика. Дата обращения 12 сентября 2019.

Авиационные масла

Масло в поршневых авиационных двигателях работает в достаточно сложных условиях. Это высокие температуры в зонах поршневых колец, на внутренних частях поршней, на клапанах и иных узлах. Поэтому для качественного обеспечения работы мотора в условиях значительных температур, давления, нагрузок, в них используют высоковязкие масла, которые подвергают специальной очистке. Они должны обладать высокой смазочной способностью, оставаться нейтральными к металлам и иным конструктивным материалам двигателя. Авиационные масла для поршневых моторов должны быть стойкими к окислению при воздействии высоких температур, не терять своих свойств при хранении.

Характеристики ДВС

Потребительские качества двигателя (принимая за образец классический поршневой или комбинированный двигатель, отдающий крутящий момент) можно охарактеризовать следующими показателями:

  1. Массовые показатели, в кг на литр рабочего объёма (обычно от 30 до 80), и в кг на 1 л.с. (1 кВт). Они важнее для транспортных, особенно авиационных, двигателей.
  2. Удельный расход топлива, г/л.с.*час (г/кВт*ч), или для конкретных видов топлив с разной плотностью и агрегатным состоянием, л/кВт*ч, м3/кВт*ч.
  3. Ресурс в часах (моточасах). Некоторые применения ДВС не требуют большого ресурса (пусковые ДВС, двигатели торпед), и потому в их конструкции могут отсутствовать, например, фильтры для масла и воздуха.
  4. Экологические характеристики (как самостоятельные, так и в составе транспортного средства), определяющие возможность его эксплуатации.
  5. Транспортные характеристики, определяющие кривую крутящего момента в зависимости от числа оборотов. При работе двигателя по винтовой характеристике, обычно без трансмиссии, специальная корректировка транспортной характеристики не требуется, но в автомобилях и тракторах хорошая транспортная характеристика (высокий запас крутящего момента, тихоходная настройка) позволяют уменьшить число передач в трансмиссии и облегчить управление.
  6. Шумность двигателя, зачастую определяемая его применением в люксовых моделях автомобилей или подводных лодках. Для снижения шумности часто снижают жёсткость подвески двигателя, усложняют схемы выпуска газов (например, выпуск газов через винт в подвесных моторах), а также капотируют.

Скоростные характеристики

Скоростные характеристики для ДВС, отдающих мощность на выходной вал, обычно характеризуются кривыми крутящего момента и мощности в зависимости от частоты вращения вала (от минимально устойчивых оборотов холостого хода до максимально возможных, при которых ДВС может работать без поломок). Дополнительно к двух вышеупомянутым кривым может быть представлена кривая удельного расхода топлива. По результатам анализа таких кривых определяется коэффициент запаса крутящего момента (он же коэффициент приспособляемости), и другие показатели, влияющие на конструкцию трансмиссии.

Внешняя скоростная характеристика 2,7 литрового двигателя Porsche Boxster

В настоящее время для потребителей представляют внешние скоростные характеристики с нетто-мощностью ISO-1585, согласно мощности по региональному стандарта измерения мощности ДВС (зависящего от температуры, давления, влажности воздуха, применяемого топлива и наличия отбора мощности на установленные агрегаты). Двигатели американских производителей обычно испытывают по другому стандарту (SAE). Внешней характеристику называют, потому что линии мощности и крутящего момента проходят выше частичных скоростных характеристик, и нельзя получить мощность выше манипуляциями с органами подачи топлива.

Однако, в более ранних публикациях имеются скоростные характеристики, базирующиеся на измерение мощности брутто (кривая крутящего момента, соответственно, также поднимается выше).

Кроме полных, в расчётах трансмиссий транспортных средств активно используются частичные скоростные характеристики, показывающих эффективные показатели двигателя при промежуточных положениях регулятора подачи топлива (или дроссельной заслонки для бензиновых). Для транспортных средств с винтами на таких характеристиках приводят винтовые при различных положениях винта с регулируемым шагом.

Существуют и другие характеристики, не предназначенные для потребителей, например с кривыми индикаторной мощности, индикаторного расхода топлива и индикаторного крутящего момента (используемые при расчёте ДВС), а также абсолютная скоростная характеристика, показывающая максимально возможную отдачу данного двигателя, которую можно получить при подаче большего количества топлива, чем на номинальном режиме. Для дизелей имеется также линия дымления, работа за которой не допускается.

Работа на абсолютной характеристике практически (кроме пуска ДВС) не производится, поскольку при этом снижается экономичность и экологичность двигателя, сокращается ресурс (особенно для дизельных двигателей, у которых работа за пределом дымления сокращает ресурс до считанных часов).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector