Рождение золота

Что такое нейтронные звезды?

Согласитесь, Вселенная — странная штука. В ней есть галактические нити, сверхскопления галактик, темная материя, пузыри Ферми, черные дыры, нейтронные звезды… список можно продолжать долго

И если о космической паутине мы рассказывали вам совсем недавно, то сегодня предлагаем обратить внимание на нейтронные звезды

Начнем с того, что более плотными объектами во Вселенной кроме нейтронных звезд являются только черные дыры. Исследователи справедливо считают, что изучение нейтронных звезд способно приблизить их к пониманию экстремальной физики Вселенной — в конце-концов именно эти звезды коллапсируют в космических монстров. По сути нейтронная звезда — это массивное атомное ядро, которое обладает весьма странными свойствами. Так, J0740+6620 является самой плотной и самой странной нейтронной звездой за всю историю наблюдений.

Нейтронные звезды — одни из самых загадочных объектов во Вселенной

Поскольку звезды, как и мы с вами, стареют и умирают, их конечное состояние зависит от массы. Чтобы понять, как нейтронные звезды образуются из умирающих звезд, сперва нужно понять, как образуются белые карлики. Дело в том, что 97% звезд во Вселенной — это белые карлики. Они состоят из электронно-ядерной плазмы и лишены источников термоядерной энергии. При этом, они являются следующим самым плотным видом звезд после нейтронных из-за своего рода “встроенного” космического знака остановки. Проще говоря, белые карлики настолько плотные, что атомные связи их материала разорваны. Это превращает их в плазму атомных ядер и электронов. При этом, обрести большую плотность чем у белых карликов довольно сложно — электроны не хотят находиться в одном и том же состоянии друг с другом и будут сопротивляться сжатию до определенной точки, где это может произойти. Физики называют это вырождением электронов.

Звезды, чья масса не превышает 10 солнечных масс, имеют тенденцию становиться белыми карликами. Предел массы белых карликов составляет около 1,44 солнечных масс. А вот более плотная звезда массой от 10 до 29 солнечных масс может стать нейтронной звездой. Дело в том, что в этот момент плотность звезды настолько велика, что преодолевает вырождение электронов: электроны по-прежнему не хотят занимать одно и то же состояние, поэтому вынуждены объединяться с протонами, в результате чего образуются нейтроны и испускаются нейтрино. Таким образом, нейтронные звезды почти полностью состоят из нейтронов и удерживаются благодаря их вырождению, которое схоже с вырождением электронов у белых карликов.

Схематическое изображение пульсара J074+6620. Сфера в середине представляет нейтронную звезду, кривые показывают линии магнитного поля, а выступающие конусы — зоны излучения.

При этом, соавтор исследования Скотт Рэнсом отмечает, что у нейтронных звезд существует переломный момент, когда их внутренняя плотность становится настолько экстремальной, что сила тяжести подавляет способность нейтронов противостоять дальнейшему коллапсу. Таким образом, если бы масса J074+6620 была больше, то звезда просто коллапсировала бы в черную дыру. Каждая «самая массивная» нейтронная звезда, которую обнаруживают ученые, постепенно приближает специалистов к определению того самого переломного момента, который удерживает нейтронную звезду от коллапса.

Состав нейтронных звезд

Точная информация о составе нейтронных звезд отсутствует. На сегодняшний день ученые-астрофизики при изучении подобных объектов пользуются рабочей моделью, предложенной физиками – ядерщиками.

Строение нейтронной звезды

Предположительно, звездное вещество в результате коллапса трансформируется в нейтронную, сверхтекучую жидкость. Этому способствует огромное гравитационное притяжение, оказывающее постоянное давление на вещество. Такая «ядерная жидкая субстанция» называется вырожденный газ и в 1000 раз плотнее воды. Атомы вырожденного газа состоят из ядра и электронов, вращающихся вокруг него. При нейтронизации внутреннее пространство атомов под воздействием сил гравитации исчезает. Электроны сливаются с ядром, образуя нейтроны. Устойчивость сверхплотной субстанции придает внутренняя гравитация. В противном случае неизбежно началась бы цепная реакция, сопровождающаяся ядерным взрывом.

Гравитационный коллапс

Чем ближе к внешнему краю звезды, тем меньше температура и давление. В результате сложных процессов происходит «остывание» нейтронной субстанции, из которой интенсивно выделяются ядра железа. Коллапс и последующий взрыв является фабрикой планетарного железа, которое распространяется в космическом пространстве, становясь строительным материалом при формировании планет.

Условно рассматривая строение нейтронной звезды в микроскоп, можно выделить в строении объекта пять слоёв:

  • атмосфера объекта;
  • внешняя кора;
  • внутренние слои;
  • внешнее ядро;
  • внутреннее ядро нейтронной звезды.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров и является самым тонким слоем. По своему составу – это слой плазмы, отвечающий за тепловое облучение звезды. Далее идет внешняя кора, которая имеет толщину в несколько сот метров. Между внешней корой и внутренними слоями — царство вырожденного электронного газа. Чем глубже к центру звезды, тем быстрее этот газ становится релятивистским. Другими словами, внутри звезды происходящие процессы связаны с уменьшением доли атомных ядер. При этом количество свободных нейтронов увеличивается. Внутренние области нейтронной звезды представляют собой внешнее ядро, где нейтроны продолжают соседствовать с электронами и протонами. Толщина этого слоя субстанции составляет несколько километров, при этом плотность материи в десятки раз выше, чем плотность атомного ядра.

Схема вращения нейтронной звезды

Весь этот атомарный супчик существует благодаря колоссальным температурам. В момент вспышки Сверхновой, температура нейтронной звезды составляет 1011К. В этот период новый небесный объект обладает максимальной светимостью. Сразу после взрыва наступает этап стремительного остывания, температура за несколько минут падает до отметки 109К. Впоследствии процесс остывания замедляется. Несмотря на то, что температура звезды все еще велика, светимость объекта снижается. Звезда продолжает светиться только за счет теплового и инфракрасного излучения.

Суперобъекты

Скоро будет полвека, как астрономы наблюдают нейтронные звёзды. Однако их история началась раньше. Физики-теоретики, постоянно придумывающие всё новые химеры, основываясь на недавних открытиях и свежих идеях, в 1930-е годы пришли к мысли, что в природе могут существовать объекты со звёздными массами и плотностью атомного ядра. Легко посчитать, что их размеры будут исчисляться десятками километров. Обычно, чтобы проще было запомнить, говорят, что радиус нейтронной звезды — 10 километров. Это должно быть близко к истине.

Ещё до открытия в 1967 году радиопульсаров физи­ки и астрофизики ­начали обсуждать возможные свойства нейтронных звёзд. Едва ли не самые удиви­тельные связаны с высокой плотностью ­вещества. Например, недра нейтронных звёзд могут иметь температуру в сотни миллионов градусов, но при этом быть сверхтекучими и сверхпроводящими. Может быть, недра этих объектов, хотя бы некоторых, состоят вовсе не из нейтронов, а из свободных кварков. Может быть… Много чего может быть у таких небесных тел. Неудивительно, что именно там «плещутся» самые странные океаны.

Общие сведения

Среди нейтронных звёзд с надёжно измеренными массами большинство имеют массу в интервале от 1,3 до 1,5 масс Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,16 солнечных масс. Самые массивные нейтронные звёзды из известных — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614–2230ruen (с оценкой массы 1,97±0,04 солнечных), PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных) и, наконец, PSR J0740+6620 (с оценкой массы по разным данным 2,14 или 2,17 солнечных). Гравитационному сжатию нейтронных звёзд препятствует давление вырожденного нейтронного газа. Максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера — Волкова, которое сейчас неизвестно, так как плохо известно уравнение состояния вещества при ядерных плотностях. Существуют теоретические предположения, что при ещё большем увеличении плотности сверх ядерной плотности возможен переход вещества нейтронных звёзд в кварковые звёзды.

Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013Гс (для сравнения — у Земли около 1 Гс). Именно процессы в магнитосфере нейтронных звёзд ответственны за радиоизлучение пульсаров. C 1990-х годов некоторые нейтронные звёзды стали причислять к магнетарам — звёздам, с магнитным полем порядка 1014 Гс и выше.

При напряжённости магнитного поля, превышающего «критическое» значение 4,414⋅1013 Гс, при котором энергия взаимодействия магнитного момента электрона с магнитным полем превышает его энергию покоя mec² становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2015 году открыто более 2500 нейтронных звёзд. Порядка 90 % из них — одиночные звёзды, остальные входят в кратные звёздные системы.

Всего же в нашей Галактике по оценкам могут находиться 108—109 нейтронных звёзд, приблизительно одна нейтронная звезда на тысячу обычных звёзд.

Для нейтронных звёзд характерна высокая скорость собственного движения (как правило, сотни км/с). В результате аккреции на поверхность нейтронной звезды межзвёздного газа нейтронная звезда может быть наблюдаема с Земли в разных спектральных диапазонах, включая оптический, на который приходится около 0,003 % всей излучаемой звездой энергии (соответствует 10 абсолютной звёздной величине).

Историческая справка

Нейтронная звезда относится к одному из немногочисленных классов космических тел, которые были предвидены в теории до того, как случилось их официальное открытие. Впервые подобная мысль появилась ещё до тех пор, как был открыт нейрон. Произошло это в феврале 1932 года с участием советского специалиста Л. Ландау. Он издал статью «О теории небесных объектов», в которой сообщил, что в мире учёных ожидается проявление подобного феномена, когда плотность материи повысится, а ядра станут тесно контактировать между собой.

В декабре 1933 года в рамках съезда Американского физического общества астрономами было создано первое точное и чёткое предсказание фактического существования данных космических тел. Они выдвинули гипотезу о том, что нейтронная звезда теоретически может появиться вследствие взрыва, произошедшего на сверхновой звезде. Теоретические расчётные действия привели к тому, что ее излучение слабое для появления возможности обнаружения с Земли посредством астрономического оборудования, используемого в то время.

С 1960-х годов прошлого века стало наблюдаться возрастание интереса к данной группе. Произошло это в рамках развития рентгеновской астрономии. Теории, выдвигаемые в процессе её освоения, предсказывали, что максимум приходится на зону рентгена мягкого. Однако неожиданные открытия случились в процессе организации радионаблюдений. В 1967 г. Д. Белл открыла объекты, способствующие определению регулярных импульсных колебаний радиоволн.

Данный феномен получилось объяснить за счет узкой направленности радиолуча. Однако будь это не нейтронная звезда, а любое обыкновенное светило, оно с учетом крайне высокой скорости вращения стало бы разрушенным. Поэтому на роль подобных маяков пригодными оказались исключительно нейтронные звезды. Первая открытая нейтронная звезда, вне всяких сомнений, PSR B1919+21.

Экзопланета и пульсар

Открытие радиопульсаров

Пульсары были открыты в июне 1967 года Джоселин Белл, аспиранткой Э. Хьюиша, на меридианном радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета на длине волны 3,5 м (85,7 МГц) во время наблюдений по исследованию мерцаний «точечных» радиоисточников. За этот выдающийся результат Хьюиш получил в 1974 году Нобелевскую премию. Результаты наблюдений были засекречены на полгода, а первому открытому пульсару присвоили имя LGM-1 (от англ. little green men — «маленькие зелёные человечки»). Это было связано с предположением искусственности строго периодических импульсов радиоизлучения.

Техническая возможность для открытия пульсаров в радиодиапазоне существовала примерно за 10 лет до их реального открытия. Более того, как стало известно позже, за несколько лет до открытия, сделанного группой Хьюиша, на обсерватории Джодрелл-Бэнк были зафиксированы сигналы от пульсара PSR B0329+54, однако они были приняты за шум земного происхождения.

После статьи Хьюиша и др. в 1968 году было открыто значительное число пульсаров, причём некоторые из них удалось связать с остатками вспышек сверхновых, таких как Крабовидная туманность или остаток в Парусах. В январе 1969 года у радиопульсара в Крабовидной туманности удалось обнаружить пульсации в оптическом диапазоне. В 1974 году был открыт пульсар в двойной системе (двойной пульсар) PSR B1913+16, с помощью которого удалось проверить различные теории гравитации. В 1990 году у пульсара PSR 1257+12 была обнаружена планетная система. Наконец, в 2004 году был найден дважды двойной пульсар PSR J0737-3039 — двойная система из двух пульсаров.

К 2011 году обнаружено уже около 1970 радиопульсаров, более половины из которых были обнаружены обсерваторией Паркса в Австралии под руководством Дика Манчестера. Из них 140 входят в состав шаровых скоплений; 21 найден в Магеллановых облаках. По теоретическим оценкам, число доступных наблюдениям радиопульсаров в Галактике оценивается как (24±3)⋅103, а полное их число — (240±30)⋅103.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector