Comet
Содержание:
Строение комет
Основные газовые составляющие комет
Атомы | Молекулы | Ионы |
---|---|---|
Н | Н 2 O | H 2 O + |
О | С 2 | H 3 O + |
С | С 3 | OH + |
S | CN | CO + |
Na | СН | CO 2 + |
Fe | СО | CH + |
Co | HCN | CN + |
Ni | СH 3 CN | |
H 2 CO |
Ядро
Ядро — твёрдая часть кометы, в которой сосредоточена почти вся её масса. Ядра комет на данный момент недоступны телескопическим наблюдениям, поскольку скрыты непрерывно образующейся светящейся материей.
По наиболее распространённой модели Уиппла ядро — смесь льдов с вкраплением частиц метеорного вещества (теория «грязного снежка»). При таком строении слои замороженных газов чередуются с пылевыми слоями. По мере нагревания газы, испаряясь, увлекают за собой облака пыли . Это позволяет объяснить образование газовых и пылевых хвостов у комет .
Однако согласно исследованиям, проведённым с помощью запущенной в 2005 году американской автоматической станции Deep Impact , ядро состоит из очень рыхлого материала и представляет собой ком пыли с порами, занимающими 80 % его объёма.
Кома
Кома — окружающая ядро светлая туманная оболочка чашеобразной формы, состоящая из газов и пыли . Обычно тянется от 100 тысяч до 1,4 миллиона километров от ядра. Давление света может деформировать кому, вытянув её в антисолнечном направлении. Кома вместе с ядром составляет голову кометы. Чаще всего кома состоит из трёх основных частей:
Хвост
У ярких комет с приближением к Солнцу образуется «хвост» — слабая светящаяся полоса, которая в результате действия солнечного ветра чаще всего направлена в противоположную от Солнца сторону. Несмотря на то, что в хвосте и коме сосредоточено менее одной миллионной доли массы кометы, почти 99,9 % свечения, наблюдаемого нами при прохождении кометы по небу, происходит именно из этих газовых образований. Дело в том, что ядро очень компактно и имеет низкое альбедо (коэффициент отражения) .
Хвосты комет различаются длиной и формой. У некоторых комет они тянутся через всё небо. Например, хвост кометы, появившейся в 1944 году [] , был длиной 20 млн км. А Большая комета 1680 года (по современной системе — C/1680 V1) имела хвост, протянувшийся на 240 млн км. Также были зафиксированы случаи отделения хвоста от кометы (C/2007 N3 (Лулинь)).
Хвосты комет не имеют резких очертаний и практически прозрачны — сквозь них хорошо видны звёзды, — так как образованы из чрезвычайно разрежённого вещества (его плотность гораздо меньше, чем, к примеру, плотность газа, выпущенного из зажигалки). Состав его разнообразен: газ или мельчайшие пылинки, или же смесь того и другого. Состав большинства пылинок схож с астероидным материалом солнечной системы, что выяснилось в результате исследования кометы 81P/Вильда космическим аппаратом «Стардаст » . По сути, это «видимое ничто»: человек может наблюдать хвосты комет только потому, что газ и пыль светятся. При этом свечение газа связано с его ионизацией ультрафиолетовыми лучами и потоками частиц, выбрасываемых с солнечной поверхности, а пыль просто рассеивает солнечный свет.
Теорию хвостов и форм комет разработал в конце XIX века русский астроном Фёдор Бредихин . Ему же принадлежит и классификация кометных хвостов, использующаяся в современной астрономии. Бредихин предложил относить хвосты комет к основным трём типам: прямые и узкие, направленные прямо от Солнца; широкие и немного искривлённые, уклоняющиеся от Солнца; короткие, сильно уклонённые от центрального светила.
Астрономы объясняют столь различные формы кометных хвостов следующим образом. Частицы, из которых состоят кометы, обладают неодинаковым составом и свойствами и по-разному отзываются на солнечное излучение. Таким образом, пути этих частиц в пространстве «расходятся», и хвосты космических путешественниц приобретают разные формы.
Скорость частицы, вылетевшей из ядра кометы складывается из скорости, приобретённой в результате действия Солнца — она направлена от Солнца к частице, и скорости движения кометы, вектор которой касателен к её орбите, поэтому частицы, вылетевшие к определённому моменту, в общем случае расположатся не на прямой линии, а на кривой , называемой синдинамой. Синдинама и будет представлять собой положение хвоста кометы в этот момент времени. При отдельных резких выбросах частицы образуют отрезки или линии на синдинаме под углом к ней, называемые синхронами. Насколько хвост кометы будет отличаться от направления от Солнца к комете, зависит от массы частиц и действия Солнца .
Структура.
В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.
Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.
Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985–1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.
Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% – от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо).
Потерянные кометой частицы движутся по своим орбитам и, попадая в атмосферы планет, становятся причиной возникновения метеоров («падающих звезд»). Большинство наблюдаемых нами метеоров связано именно с кометными частицами. Иногда разрушение комет носит более катастрофический характер. Открытая в 1826 комета Биелы в 1845 на глазах у наблюдателей разделилась на две части. Когда в 1852 эту комету видели в последний раз, куски ее ядра удалились друг от друга на миллионы километров. Деление ядра обычно предвещает полный распад кометы. В 1872 и 1885, когда комета Биелы, если бы с нею ничего не случилось, должна была пересекать орбиту Земли, наблюдались необычайно обильные метеорные дожди. См. также МЕТЕОР; МЕТЕОРИТ.
Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров – Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.
Таблица 1. ОСНОВНЫЕ ГАЗОВЫЕ СОСТАВЛЯЮЩИЕ КОМЕТ | ||
Атомы | Молекулы | Ионы |
H | H2O | H2O+ |
O | OH | H3O+ |
C | C2 | OH+ |
S | C3 | CO+ |
Na | CN | CO2+ |
Fe | CH | CH+ |
Co | CO | CN+ |
Ni | HCN | |
CР3CN | ||
HCO |
Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.
Общие сведения
Предположительно, долгопериодические кометы прилетают во внутреннюю Солнечную систему из облака Оорта, в котором находится огромное количество кометных ядер. Тела, находящиеся на окраинах Солнечной системы, как правило, состоят из летучих веществ (водяных, метановых и других газов), испаряющихся при подлёте к Солнцу.
На данный момент обнаружено более 400 короткопериодических комет. Из них около 200 наблюдалось в более чем одном прохождении перигелия. Многие из них входят в так называемые семейства. Например, большинство самых короткопериодических комет (их полный оборот вокруг Солнца длится 3—10 лет) образуют семейство Юпитера. Немного малочисленнее семейства Сатурна, Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).
Кометы движутся по вытянутым эллиптическим орбитам
Обратите внимание на два различных хвоста.. Кометы, прибывающие из глубин космоса, выглядят как туманные объекты, за которыми тянется хвост, иногда достигающий в длину нескольких миллионов километров
Ядро кометы представляет собой тело из твёрдых частиц, окутанное туманной оболочкой, которая называется комой. Ядро диаметром в несколько километров может иметь вокруг себя кому в 80 тыс. км в поперечнике. Потоки солнечных лучей выбивают частицы газа из комы и отбрасывают их назад, вытягивая в длинный дымчатый хвост, который движется за ней в пространстве.
Кометы, прибывающие из глубин космоса, выглядят как туманные объекты, за которыми тянется хвост, иногда достигающий в длину нескольких миллионов километров. Ядро кометы представляет собой тело из твёрдых частиц, окутанное туманной оболочкой, которая называется комой. Ядро диаметром в несколько километров может иметь вокруг себя кому в 80 тыс. км в поперечнике. Потоки солнечных лучей выбивают частицы газа из комы и отбрасывают их назад, вытягивая в длинный дымчатый хвост, который движется за ней в пространстве.
Яркость комет очень сильно зависит от их расстояния до Солнца. Из всех комет только очень малая часть приближается к Солнцу и Земле настолько, чтобы их можно было увидеть невооружённым глазом. Самые заметные из них иногда называют «большими (великими) кометами».
Многие из наблюдаемых нами метеоров («падающих звёзд») имеют кометное происхождение. Это потерянные кометой частицы, которые сгорают при попадании в атмосферу планет.
Результаты исследования спектра межзвёздной кометы C/2019 Q4 (Борисова) показывают, что кометы в других планетных системах могут образовываться в результате процессов, аналогичных тем, которые привели к образованию комет в облаке Оорта в Солнечной системе.
Комета Галлея.
Это самая знаменитая из всех комет. Она наблюдалась 30 раз с 239 до н.э. Названа в честь Э.Галлея, который после появления кометы в 1682 рассчитал ее орбиту и предсказал ее возвращение в 1758. Орбитальный период кометы Галлея – 76 лет; последний раз она появилась в 1986 и в следующий раз будет наблюдаться в 2061. В 1986 ее изучали с близкого расстояния 5 межпланетных зондов – два японских («Сакигаке» и «Суйсей»), два советских («Вега-1» и «Вега-2») и один европейский («Джотто»). Оказалось, что ядро кометы имеет картофелеобразную форму длиной ок. 15 км и шириной ок. 8 км, а его поверхность «чернее угля».Возможно, оно покрыто слоем органических соединений, например полимеризованного формальдегида. Количество пыли вблизи ядра оказалось значительно выше ожидаемого. См. также ГАЛЛЕЙ, ЭДМУНД.
Как обращаются кометы?
На протяжении многих лет они могут передвигаться вдали от Солнца. Но иногда две кометы сталкиваются либо пролетают очень близко друг к другу. В результате меняется траектория движения – комета может начать направляться в сторону нашей звезды.
Постепенно приближаясь к Солнцу, космическое тело все сильнее ощущает силу притяжения. Из-за этого скорость кометы возрастает еще больше. При достаточно близком расстоянии к Солнцу происходит нагревание газов, и комета становится видимой.
Перемещаются кометы по разным орбитам в форме конуса. Ядро подчиняется законам небесной механики. Таким образом, когда комета проходит вблизи какой-то планеты, на нее воздействует сила притяжения. Тем самым происходит ускорение тела в определенном направлении. Поэтому кометные орбиты имеют вытянутые формы в отличие от эллиптических орбит планет Солнечной системы.
Орбита кометы
Интересный факт: наиболее известной считается комета Галлея. Она возвращается к Солнцу каждые 75 лет. Увидеть ее можно даже невооруженным глазом. Последний раз комету наблюдали в 1986 году. Следующее предполагаемое появление – июль 2061.
Кометы делятся на два вида по периодичности обращения вокруг звезды: короткопериодические (до 200 лет) и долгопериодические (более 200 лет).
Кометы могут неоднократно обращаться вокруг Солнца либо появиться лишь раз – это тоже зависит от траектории. Кроме того, тела с недостаточной массой могут полностью испариться под действием солнечных лучей. Иногда кометы даже распадаются на несколько частей. Так происходит из-за рыхлой структуры некоторых тел.
Главной составляющей частью кометы является ядро, которое перемещается по орбите. Оно подвергается законам небесной механики, которые определяют движение ядра в космическом пространстве. Обычно кометы передвигаются вдали от Солнца, но иногда они сталкиваются и при стечении обстоятельств меняют траекторию движения. Ядро оказывается в гравитационном поле других космических тел, с более значимой массой. Среди них – планеты Солнечной системы и само Солнце. Таким образом, траектория кометы – это орбита ее ядра.
Самые известные кометы Солнечной системы
Комета Галлея
Комета Галлея
Комета Галлея — самая знаменитая из всех комет. Ведь британский ученый Эдмунд Галлей стал первым, кто смог доказать периодичность комет после своих наблюдений и анализа данных астрономов прошлого. Он смог с точностью предсказать возвращение кометы, которая впервые была замечена в 1066 году. Комета Галлея шириной 8 км и длиной 16 км совершает оборот вокруг Солнца каждые 75–76 лет по вытянутой орбите. Последний раз она проходил близко к Земле в феврале 1986 года.
Комета Шумейкеров-Леви 9
Комета Шумейкеров — Леви 9,представлявшая собой цепочку фрагментов
Комета Шумейкеров-Леви 9 стала знаменита тем, что в 1992 году под воздействием гравитации Юпитера она разорвалась на 21 часть, а затем в 1994 году все части обрушилась на поверхность газового гиганта. Это зрелище наблюдали все астрономы-любители и профессионалы. Утверждается, что удар одного фрагмента — около 3 км в диаметре — привел к взрыву, эквивалентному 6 миллионам мегатонн тротила.
Комета Чурюмова-Герасименко
Комета Чурюмова-Герасименко
Запущенный в 2004 году космический зонд Розетта, принадлежащий Европейскому космическому агентству, который должен был приземлиться на комету Чурюмова-Герасименко в 2014 году. Считается, что комета имеет ширину около пяти километров и в настоящее время вращается вокруг Солнца примерно каждые 6,6 лет. Её орбита раньше была намного больше, но взаимодействие с гравитации Юпитера с 1840 года изменило ее на гораздо меньшую. Затем орбитальный аппарат провел почти два рядом с кометой, когда она направилась обратно к Солнцу. Зонд изучил состав кометы, чтобы помочь нам лучше понять историю формирования нашей Солнечной системы.
Комета Хейла-Боппа
В январе 1997 года комета Хейла-Боппа приблизилась к Земле на самое близкое расстояние за 4000 лет. Последний раз этот объект пролетал рядом с нашей планетой еще в бронзовый век, то есть 2000 лет до нашей эры. Комета Хейла-Боппа значительно больше и яре кометы Галлея. Ядро достигает 40 км в диаметре и видна невооруженным глазом. Хейл-Бопп настолько яркий, что его можно было увидеть с Земли в 1995 году, когда она еще находилась за пределами орбиты Юпитера.
Комета Борелли
Ядро кометы Борелли
Это вторая по счету комета после Галлея, которая была сфотографирована крупным планом с помощью космического корабля Deep Space 1, отправленным НАСА в 2001 году. Эта исследовательская миссия дала много данных для ученых, благодаря этому астрономы смогли многое понять о ядрах комет. Снимки показали, что каменистое ядро имеет форму гигантской кегли длиной 8 километров, и вся комета странно изогнута.
В отличие от кометы Галлея, которая сформировалась в Облаке Оорта на внешних границах Солнечной системы, Боррелли, как полагают, происходит из пояса Койпера.
Комета Хякутакэ
C/1996 B2 (Хякутакэ)
Эта комета произвела неизгладимое впечатление на ученых, когда в 1996 году она прошла рядом с нашей планетой, приблизилась к Земле на расстояние всего 15 миллионов километров, что оказалось самым близким расстоянием на которое приближались любые другие кометы. Комета озадачила астрономов, поскольку она излучала радиационные лучи в 100 раз интенсивнее, чем предполагалось.
Космический аппарат “Улисс” прошел через хвост этой кометы в мае 1996 года, показав, что его длина составляет не менее 570 миллионов километров — в два раза больше, чем у любой другой известной кометы.
Фотографии кометы ISON
ISON возвращается после облета Солнца
28 ноября 2013 года SOHO запечатлел комету ISON в виде белого мазка, направленного вверх от Солнца после орбитального облета. Ученые считают, что ей удалось пережить это опасное путешествие.
ISON в обзоре Вальдемара Скорупа
16 ноября 2013 года астроном из Германии запечатлел это снимок кометы ISON.
ISON в обзоре МКС
23 ноября 2013 года один из членов 38-й экспедиции МКС сумел запечатлеть комету ISON на фото (справа и ниже центра). Большую часть кадра занимают аппаратные компоненты и земная атмосфера. Остальные яркие точки – небесные тела. Комета примечательна своим хвостом.
ISON 27-го ноября
27 ноября 2013 года аппарат SOHO зафиксировал обзор кометы, опередив ее приближение к Солнцу на один день.
ISON в обзоре SOHO 28 ноября
Утром 28 ноября 2013 года комета выполнила максимальный подход к нашей звезде. Это составной снимок, где Обсерватория Солнечной Динамики запечатлела Солнце, а SOHO – корону.
Комета, зафиксированная 28-го ноября
28 ноября 2013 года SOHO зафиксировал приближение ISON к Солнцу. Это композиционный кадр, где изображение Солнца добыто Обсерваторией Солнечной Динамики, а корона – SOHO.
Направляющаяся к Солнцу комета
15 ноября Джон Насром сумел зафиксировать комету ISON (С/2012 S1) в рамках миссии Stardust. Ученый применил цифровую зеркальную камеру с 16-дюймовым рефлектором для фиксации сложного хвоста. Кадр создан из 5 экспозиций в течение минутной съемки.
ISON в обзоре Субару
5 ноября камера телескопа Субару сумела зафиксировать комету ISON на фото (C/2012 S1), когда она приближалась к Солнцу
Особенное внимание привлекает к себе кометный хвост, вытянувшийся на 2 диаметра полной Луны
ISON (17 ноября)
17 ноября Джейсон Хуллингер запечатлел комету из национального парка Джошуа-Три.
ISON (16 ноября)
16 ноября 2013 года комета ISON попалась в обзор Алексу Кону в Бухаресте (Румыния).
Открытие | |
---|---|
Первооткрыватель: | Виталий Невский, Артём Олегович Новичонок, Обсерватория ISON-Кисловодск |
Дата открытия: | 21 сентября 2012 |
Альтернативные обозначения: | Большая комета 2013 года |
Характеристики орбиты | |
Эксцентриситет | 1,0000021 |
Перигелий | 0,0124440 а.е. |
Максимальная орбитальная скорость: | 380 км/с |
Наклонение орбиты: | 62.39925° |
Аргумент перицентра: | 345,56449° |
Последний перигелий: | 28 ноября 2013 |
Наиболее известные кометы | |
Короткопериодические | ISON · Темпеля—Туттля · Свифта—Туттля · Галлея · Джакобини—Циннера · Чурюмова—Герасименко · Вильда · Темпеля · Борелли · Энке · Шумейкеров—Леви 9 · Каталина |
Долгопериодические | Тэтчер · Макнота · Хейла—Боппа · Каталина |
Не периодические | PANSTARRS |
Солнечная система |
Из чего состоит комета
Как и любая планета, комета тоже считается космическим телом, но довольно маленького размера по космическим меркам. Диаметр ее ядра примерно 20 км. Передвигаются такие тела тоже вокруг Солнца, но орбита перемещения у них очень вытянута. Если вести наблюдение за кометой с Земли, то для нас она кажется каким-то ярким шаром с длинным сверкающим шлейфом. Но мы видим не все, она имеет четыре части:
- ядро;
- голова;
- пылевой хвост;
- ионный хвост.
Все начинается с ядра кометы. Это ее самая главная часть. Но по поводу его состава есть некоторые споры. Сначала предполагалось, что ядро представляет собой скопление льда и снега, но сейчас больше склоняются к тому, что все-таки в состав входят твердые каменные частицы в совокупности с газами. Такое строение именуется моделью Уипла.
Голова кометы окутывает ее ядро туманной атмосферой. При сокращении расстояния между кометой и Солнцем, из ее ядра начинают выделяться мелкие частицы и газы. В результате мы видим хвост кометы.
Кометы и история
В древние времена кометы были причинной многочисленных суеверий, а то и чудес. Частенько их появление на ночном небе связывали, то с предзнаменованиями разных несчастий, то наоборот, великих благостных событий. Так знаменитая «Вифлеемская звезда», описанная в Библии, которую согласно Евангелию от Матвея увидели волхвы на звездном небе и поняли что родился «Царь Иудейский», с большой вероятностью была как раз таки кометой.
Писали о кометах в своих трудах и видные ученые мужи античности, в частности Аристотель полагал, что кометы представляют собой светящийся газ, а римский философ Сенека выдвинул предположение, что кометы – небесные тела, которые двигаются по своим орбитам.
Немало шума в истории наделала знаменитая комета Галлея, которая не раз была замечена на звездном небосклоне и всегда ее появление связывалась с разными историческими событиями. Например, считается, что прилет кометы Галлея в 1066 году принес с собой смерть английского короля Гарольда ІІ и победу Вильгельма Завоевателя – один из поворотных моментов в истории европейского средневековья.
Появление кометы Галлея в 1066, фрагмент гобелена из Байе, прославляющего победу Вильгельма Завоевателя.
Изучение комет
Люди всегда проявляли особый интерес к кометам. Их необычный вид и неожиданность появления служили в течение многих веков источником всевозможных суеверий. Древние связывали появление в небе этих космических тел со светящимся хвостом с предстоящими бедами и наступлением тяжёлых времён.
Появление кометы Галлея в 1066 году. Фрагмент гобелена из Байё, ок. 1070 года
В эпоху Возрождения в немалой степени благодаря Тихо Браге кометы получили статус небесных тел. В 1814 году Лагранж выдвинул гипотезу, что кометы произошли в результате извержений и взрывов на планетах, в XX веке эту гипотезу развивал С. К. Всехсвятский. Лаплас же считал, что кометы происходят из межзвёздного пространства.
Исчерпывающее представление о кометах астрономы получили благодаря успешным «визитам» в 1986 г. к комете Галлея космических аппаратов «Вега-1» и «Вега-2» и европейского «Джотто». Многочисленные приборы, установленные на этих аппаратах, передали на Землю изображения ядра кометы и разнообразные сведения о её оболочке. Оказалось, что ядро кометы Галлея состоит в основном из обычного льда (с небольшими включениями углекислых и метановых льдов), а также пылевых частиц. Именно они образуют оболочку кометы, а с приближением её к Солнцу часть из них — под давлением солнечных лучей и солнечного ветра — переходит в хвост.
Размеры ядра кометы Галлея, как правильно рассчитали учёные, равны нескольким километрам: 14 — в длину, 7,5 — в поперечном направлении.
Ядро кометы Галлея имеет неправильную форму и вращается вокруг оси, которая, как предполагал ещё немецкий астроном Фридрих Бессель (1784—1846), почти перпендикулярна плоскости орбиты кометы. Период вращения оказался равен 53 часам — что опять-таки хорошо согласовалось с вычислениями астрономов.
В 2005 г. космический аппарат НАСА «Дип Импакт» сбросил на комету Темпеля 1 зонд и передал изображения её поверхности.
В России
Сведения о кометах появляются уже в древнерусском летописании в Повести временных лет
Летописцы обращали на появление комет особое внимание, поскольку их считали предвестницами несчастий — войны, мора и т. д. Однако какого-то особого названия для комет в языке древней Руси не существовало, поскольку их считали движущимися хвостатыми звездами
В 1066 году, когда описание кометы впервые попало на страницы летописей, астрономический объект именовался «звезда велика; звезда привелика, луце имуши акы кровавы, въсходящи с вечера по заходе солнецьном; звезда образ копииныи; звезда… испущающе луча, еюже прозываху блистаньницю».
Слово «комета» проникает в русский язык вместе с переводами европейских сочинений о кометах. Его наиболее раннее упоминание встречается в сборнике «Бисер златый» («Луцидариус», лат. Lucidarius), представляющем собой нечто вроде энциклопедии, рассказывающей о мироустройстве. «Луцидариус» был переведен с немецкого языка в начале XVI века. Поскольку слово было новым для русских читателей, переводчик был вынужден пояснять его привычным наименованием «звезда»: «звезда комита дает блистание от себе яко луч». Однако прочно в русский язык понятие «комета» вошло в середине 1660-х годов, когда в небе над Европой действительно появлялись кометы. Это событие вызвало массовый интерес к явлению. Из переводных сочинений русский читатель узнавал, что кометы совсем не похожи на звезды. Отношение же к появлению небесных тел как к знамениям сохранялось как в России, так и в Европе вплоть до начала XVIII века, когда появились первые сочинения, отрицающие «чудесную» природу комет.
Освоение европейских научных знаний о кометах позволило русским учёным внести собственный вклад в их изучение. Во второй половине XIX века астроном Фёдор Бредихин (1831—1904) построил полную теорию природы комет, происхождения кометных хвостов и причудливого разнообразия их форм.