«национальный исследовательский университет итмо»
Содержание:
Кремниевые лазеры
Вообще-то словосочетание “кремниевый лазер” – это оксюморон. Являясь так называемым непрямозонным полупроводником, кремний совершенно не способен излучать свет. Вот почему в оптоволоконных телекоммуникациях используются решения на основе других (прямозонных) полупроводников, например арсенида галлия. При этом кремний отлично подходит для создания волноводов и детектирования оптических сигналов в электрические.
Так в чём же проблема? Можно использовать внешний по отношению к кремниевой схеме лазер или же разработать гибридную схему на основе кремния и, например, того же арсенида галлия. Но ни то ни другое решение нельзя считать эффективным. В случае использования внешнего лазера (а в современных волоконно-оптических системах макроуровня так и делается) на микроуровне практически невозможно точно откалибровать луч по отношению к волноводу нанометровых размеров. Включение же арсенида галлия в технологический процесс производства чипов КМОП потерпело неудачу. Слишком разные условия для производства нужны этим двум полупроводникам.
Так что же, кремниевому лазеру никогда не увидеть (точнее, не испустить) свет? Конечно же, нет. Кремний можно заставить светить, если применить различные хитрости. Например, легировать его материалом, который будет испускать фотоны за кремний. Или так изменить структуру самого кремния, что он вынужден будет засветиться. Третий способ – применить комбинационное рассеяние света (его ещё называют рамановским), временно превращающее кремний в практически прямозонный полупроводник.
Один из способов заставить кремний светиться – создать пористую кремниевую структуру
Схема и микрофотография лазера на основе рамановского рассеяния
В настоящее время наибольших успехов учёные добились в области технологий легирования кремния. Самая известная реализация кремниевого лазера непрерывного действия на их основе – лазер, разработанный компанией Intel совместно с Калифорнийским университетом Санта-Барбары. Учёным удалось с помощью окиси “приклеить” прямозонный полупроводник фосфид индия к кремниевому волноводу. Толщина “клея” при этом составляет всего 25 атомов. Создавая разность потенциалов между кремнием и фосфидом индия (это называется “электрическая накачка”), они добились формирования фотонов, которые через “клей” проникают в кремниевый волновод.
Схема схема гибридного кремниевого лазера непрерывного действия
На основе такой схемы создаются варианты гибридного кремниевого лазера с разной длиной волны (инфракрасного диапазона, прозрачного для кремния), что позволяет реализовать многоканальную коммуникационную систему.
Фотоника. Кирпичики технологии
Способна ли фотоника полностью заменить электронику в микросхемотехнике? Наверное, нет. Распространение света основывается на законах оптики, что вносит существенные ограничения в разработку таких базовых компонентов, как транзисторы, конденсаторы и диоды. Нет, попытки разработать оптические аналоги транзистора предпринимались достаточно давно, да и сегодня они не прекращаются. Только вот составить конкуренцию отработанной технологии КМОП они не могут.
Схема фотонного транзистора была предложена ещё в восьмидесятых годах прошлого столетия
В чём фотоника действительно преуспевает, так это в реализации высокоскоростных каналов, связывающих компоненты цифровых схем. То есть в тех местах, где электроника начинает всё активнее буксовать. Увеличение степени интеграции компонентов микросхем сказывается на размерах соединяющих их металлических проводников. С переходом на двадцатидвухнанометровый технологический процесс производства КМОП инженеры столкнулись с проблемой переходных явлений в миниатюрных медных шинах. Явления эти способны легко привести к ошибкам в работе сложного вычислительного комплекса, плотно упакованного в кремниевый чип.
Использование фотоники в качестве коммуникационной среды микросхем позволяет технологам одновременно избавить новые чипы от влияния переходных процессов в медных проводниках и существенно снизить нагрев микросхемы. В отличие от непродуктивно превращающих свою энергию в тепло электронов, фотоны, продвигаясь по оптическому проводнику, совершенно не рассеивают тепло.
Итак, компромиссным решением является комбинация электроники и фотоники. За электроникой остаётся основа цифровой схемотехники, а фотоника берёт на себя роль универсальной проводящей среды.
Что же для такой среды нужно? В первую очередь источник фотонов – лазер. Далее – проводящая среда, по которой фотоны смогут распространяться внутри микросхем, – волноводы. Чтобы нули и единицы, сформированные электронными компонентами, превратились в световой поток, и для обратного преобразования потребуются модуляторы и демодуляторы, но, конечно же, не простые, а оптические.
Ну и, чтобы добиться высокой пропускной способности, необходимой каналам нынешних интегральных микросхем, потребуются мультиплексоры и демультиплексоры (тоже, конечно, оптические). Причём все эти компоненты необходимо реализовать на той же самой кремниевой базе, которая используется и для технологии КМОП.
Разработка этих “кирпичиков” – путь, которым шла кремниевая фотоника последние двадцать лет. За это время была предложена масса уникальных решений, которые и явились той самой “суммой технологий”, позволяющей фотонике перейти на качественно новый уровень. Уровень интегрированных оптико-электронных схем.
Похожие новости
25/02/2016
Ученые Института ядерной физики СО РАН создали фотонную ловушку, идея которой родилась из аналогии с открытыми плазменными ловушками и простейшим бильярдом, сообщает пресс-служба института. В термоядерном реакторе должно выделяться энергии больше, чем затрачивается на нагрев плазмы.
3165
20/06/2017
Уникальная международная выставка достижений технологического развития «НТИ ЭКСПО» пройдет в рамках V Международного форума технологического развития «Технопром-2017» 20-22 июня в Новосибирске при поддержке правительства РФ, коллегии ВПК, Минпромторга России, Минэкономразвития России, МИДа РФ, правительства Новосибирской области.
3827
29/01/2020
Об итогах 2019 года и основных задачах реализации проекта синхротрона СКИФ в 2020 году рассказал РБК Новосибирск заместитель руководителя проектного офиса ЦКП «СКИФ» ИК СО РАН Яков Ракшун. Что удалось добиться в работе над проектом синхротрона СКИФ в 2019 году? — Была проделана большая работа, которая закончилась выходом в конце 2019 года постановления правительства России о федеральной адресной инвестиционной программе, в которой определен предельный объем бюджетного финансирования проекта — 37,1 миллиарда рублей и сроки исполнения работ.
537
17/05/2017
17-19 мая 2017 в Москве в павильоне № 75 ВДНХ откроется XIII Московский международный инновационный форум «Точные измерения – основа качества и безопасности (MetrolExpo-2017)». Организаторы выставки: Минпромторг России и Росстандарт при поддержке Правительства Российской Федерации, Международных организаций (BIPM, OIML, Coomet).
1449
04/04/2018
454 организации разделили по трем категориям. Чем отличились сельскохозяйственные институты, чему Минздраву стоит поучиться у ФАНО и в каком регионе больше всего институтов из третьей категории, читайте в материале Indicator.
5342
15/04/2019
Коллектив российских ученых, используя экспериментальную базу Национального исследовательского центра «Курчатовский институт», разработали новый метод реконструкции климатических условий тысячелетнего прошлого с очень высокой точностью.
547
06/08/2019
В последнее десятилетие во многих лабораториях мира активно исследуются возможности создания высокоэффективных, мощных и компактных лазеров, генерирующих пучки излучения в среднем инфракрасном диапазоне, в частности на длинах волн 3–8 мкм.
792
08/08/2018
Тысячные тиражи компонентов из новейших материалов через пять лет смогут получать предприятия российской электронной промышленности. Источник — новый инжиниринговый центр, о котором рассказывает врио директора Института физики полупроводников имени Ржанова СО РАН академик Александр Васильевич Латышев.
1539
10/07/2019
В России в 2019 году пройдут испытания модели сверхзвукового делового самолета разработки «Туполева» со сниженным уровнем звукового удара. Его испытают в аэродинамической трубе, сообщил «Интерфаксу» источник в авиапроме.
1300
IBM SNIPER. Кремниевый терабит
Решения в области кремниевой фотоники, предложенные компанией Intel, направлены на продвижение фотонных технологий в области интерфейсов периферийных устройств. Ближайшей коммерческой перспективой является пятидесятигигабитный оптический вариант интерфейса Thunderbolt (возможно, к моменту промышленной реализации его назовут по-другому). В более отдалённой перспективе Intel рассматривает увеличение пропускной способности до двухсот гигабит в секунду. Сказать, что это быстро, значит не сказать ничего: например, содержимое диска DVD при такой скорости может быть передано за одну секунду.
Точно такую же цель поставила перед собой лаборатория IBM Research. Поставила и добилась! Правда, использовать свой терабит IBM планирует не в коммуникационных интерфейсах, а в высокоскоростных шинах, соединяющих ядра многоядерного процессора.
Межядерная коммуникация на основе кремниевой фотоники
Идея проекта SNIPER от IBM Research (синим цветом показана фотонная часть схемы)
Проект SNIPER является практической реализацией идеи нанофотоники, использующей рассмотренные выше “строительные блоки” для создания фотонной коммуникационной сети. Эта фотонная сеть интегрирована поверх многослойного “пирога” системы на чипе, включающем многопроцессорный модуль и модуль оперативной памяти. Имея выходы наружу, такая сеть обеспечивает подключение этой системы на чипе к высокоскоростной оптической шине данных, соединяющей процессор с периферией. Внутренняя же волноводная разводка обеспечивает маршрутизацию данных между ядрами процессорного модуля.
Шестиканальный фотонный модуль проекта SNIPER
В настоящее время проект SNIPER может похвастаться реализацией шестиканального модуля фотонного приёмо-передатчика, использующего гибридные кремниевые лазеры, модуляторы Маха-Цендера и мультиплексор на основе массива волноводов. Пропускная способность каждого канала этого приёмо-передатчика составляет двадцать гигабит в секунду. На подложке размером 25 квадратных миллиметров реализовано пятьдесят таких каналов, что обеспечивает тот самый терабит пропускной способности.
Фотонный чип проекта SNIPER, обеспечивающий терабитную пропускную способность
Что самое главное, SNIPER – уже не исследовательский проект. Библиотеки всех элементов фотоники для кремниевой литографии отработаны для производственного цикла. Как и методика их интеграции с КМОП-логикой системы на чипе.
Где в первую очередь будет применяться это решение? Конечно же, в суперкомпьютерных системах и датацентрах облачных вычислений. Там, где вычислительная мощность электронных схем больше всего нуждается в обмене данными со скоростью света.
Однако можно быть уверенным, что экспансия кремниевой фотоники в потребительскую вычислительную технику не за горами. Начнётся всё с интерфейсов подключения периферии, а там, глядишь, и шины для мультиядерных решений подтянутся, превратив скучный кремний внутри наших процессоров в сверкающий всеми цветами спектра магический кристалл.