Жизненный цикл звезды

Эпизод I. Протозвезды

Протопланетный диск, окружающий молодую солнечную систему в туманности Ориона

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!

Эта огромная панорама туманности Ориона получена из снимков телескопа Хаббл. Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Эволюция звезд с научной точки зрения

Любая звезда зарождается из сгустка холодного межзвездного газа, который под действием внешних и внутренних гравитационных сил сжимается до состояния газового шара. Процесс сжатия газовой субстанции не останавливается ни на мгновение, сопровождаясь колоссальным выделением тепловой энергии. Температура нового образования растет до тех пор, пока не запускается в ход термоядерный синтез. С этого момента сжатие звездной материи прекращается, достигнут баланс между гидростатическим и тепловым состоянием объекта. Вселенная пополнилась новой полноценной звездой.

Главное звездное топливо — атом водорода в результате запущенной термоядерной реакции

В эволюции звезд принципиальное значение имеют их источники тепловой энергии. Улетучивающаяся в пространство с поверхности звезды лучистая и тепловая энергия пополняются за счет охлаждения внутренних слоев небесного светила. Постоянно протекающие термоядерные реакции и гравитационное сжатие в недрах звезды восполняют потерю. Пока в недрах звезды имеется в достаточном количестве ядерное топливо, звезда светится ярким светом и излучает тепло. Как только процесс термоядерного синтеза замедляется или прекращается совсем, для поддержания теплового и термодинамического равновесия запускается в действие механизм внутреннего сжатия звезды. На данном этапе объект уже излучает тепловую энергию, которая видна только в инфракрасном диапазоне.

Исходя из описанных процессов, можно сделать вывод, эволюция звезд представляет собой последовательную смену источников звездной энергии. В современной астрофизике процессы трансформации звезд можно расставить в соответствии с тремя шкалами:

  • ядерная временная шкала;
  • тепловой отрезок жизни звезды;
  • динамический отрезок (финальный) жизни светила.

В каждом отдельном случае рассматриваются процессы, определяющие возраст звезды, ее физические характеристики и разновидность гибели объекта. Ядерная временная шкала интересна до тех пор, пока объект питается за счет собственных источников тепла и излучает энергию, являющуюся продуктом ядерных реакций. Оценка длительности этого этапа вычисляется путем определения количества водорода, которое превратится в процессе термоядерного синтеза в гелий. Чем больше масса звезды, тем больше интенсивность ядерных реакций и соответственно выше светимость объекта.

Размеры и масса различных звезд, начиная от сверхгиганта, заканчивая красным карликом

Тепловая временная шкала определяет этап эволюции, в течение которого звезда расходует всю тепловую энергию. Этот процесс начинается с того момента, когда израсходовались последние запасы водорода и ядерные реакции прекратились. Для поддержания равновесия объекта запускается процесс сжатия. Звездная материя падает к центру. При этом происходит переход кинетической энергии в тепловую энергию, затрачиваемую на поддержание необходимого температурного баланса внутри звезды. Часть энергии улетучивается в космическое пространство.

Примечания

  1. Prialnik, Dina. An Introduction to the Theory of Stellar Structure and Evolution. — Cambridge University Press, 2000. — P. 195–212. — ISBN 0-521-65065-8.
  2. Dupraz, C. (June 4–9, 1990). «The Fate of the Molecular Gas from Mergers to Ellipticals». Dynamics of Galaxies and Their Molecular Cloud Distributions: Proceedings of the 146th Symposium of the International Astronomical Union, Paris, France: Kluwer Academic Publishers.
  3. Lequeux, James. Birth, Evolution and Death of Stars. — World Scientific, 2013. — ISBN 978-981-4508-77-3.
  4. Williams, J. P. (2000). «The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF». Protostars and Planets IV.
  5. Alves, J. Tracing H2 Via Infrared Dust Extinction. — Cambridge University Press, 2001. — P. 217. — ISBN 0-521-78224-4.
  6. Wilking, B. A. Star Formation in the ρ Ophiuchi Molecular Cloud // Handbook of Star Forming Regions, Volume II: The Southern Sky ASP Monograph Publications / Bo Reipurth.
  7. Hartmann, Lee. Accretion Processes in Star Formation. — Cambridge University Press, 2000. — P. 4. — ISBN 0-521-78520-0.
  8. Smith, Michael David. The Origin of Stars. — Imperial College Press, 2004. — P. 43–44. — ISBN 1-86094-501-5.
  9. Kwok, Sun. Physics and chemistry of the interstellar medium. — University Science Books, 2006. — P. 435–437. — ISBN 1-891389-46-7.
  10. Battaner, E. Astrophysical Fluid Dynamics. — Cambridge University Press, 1996. — P. 166–167. — ISBN 0-521-43747-4.
  11. Jog, C. J. (August 26–30, 1997). «Starbursts Triggered by Cloud Compression in Interacting Galaxies». Barnes, J. E. Proceedings of IAU Symposium #186, Galaxy Interactions at Low and High Redshift.
  12. Prialnik, Dina. An Introduction to the Theory of Stellar Structure and Evolution. — Cambridge University Press, 2000. — P. 198–199. — ISBN 0-521-65937-X.
  13. Hartmann, Lee. Accretion Processes in Star Formation. — Cambridge University Press, 2000. — P. 22. — ISBN 0-521-78520-0.
  14. Li, Hua-bai; Dowell, C. Darren; Goodman, Alyssa; Hildebrand, Roger & Novak, Giles (2009-08-11), «Anchoring Magnetic Field in Turbulent Molecular Clouds»,

  15. Ballesteros-Paredes, J. Molecular Cloud Turbulence and Star Formation // Protostars and Planets V / Reipurth, B.. — P. 63–80. — ISBN 0-8165-2654-0.
  16. Longair, M. S. Galaxy Formation. — 2nd. — Springer, 2008. — P. 478. — ISBN 3-540-73477-5.
  17. Salaris, Maurizio. Evolution of stars and stellar populations / Cassisi, Santi. — John Wiley and Sons, 2005. — P. 108–109. — ISBN 0-470-09220-3.
  18. C. Hayashi (1961). «Stellar evolution in early phases of gravitational contraction». Publications of the Astronomical Society of Japan 13: 450–452. .

Звезды К- и М-класса

Звезды с низкой массой не обязательно маленькие. Используя наше Солнце для сравнения размеров, большинство звезд с низкой массой составляют примерно 1,4 солнечных единицы — или 1,4 раза больше нашего Солнца. Хотя они могут быть больше, они значительно легче по весу, чем звезды класса G, такие как наше Солнце.

Начало жизни звезды с малой массой похоже на жизнь с высокой и средней массой: она образуется из пылевого облака, инициирует ядерный синтез и горит как часть главной последовательности в течение миллиардов лет. Как только у этих звезд истощается водород, ядро ​​начинает разрушаться, становясь более горячим и плотным с течением миллионов лет. В конце концов, это ядро ​​достигнет температуры примерно 100 миллионов градусов Кельвина, где молекулы гелия начинают сливаться с углеродом. Внешность звезды темнеет до красного, становясь красным гигантом по мере расширения.

Как это происходит, происходит гелиевая вспышка. Это заставляет внешнюю часть звезды расширяться и слегка охлаждает ядро. Она проходит через этот цикл несколько раз, нагреваясь и охлаждаясь, когда внешняя оболочка расширяется и сжимается. Вот тут-то и начинается самое интересное.

Вместо того, чтобы взорваться как звезда с высокой массой, она в конце концов теряет сцепление, так как гравитация больше не может сдерживать внешние слои. Она становится так называемой планетарной туманностью.

Как только это произойдет, все, что осталось, — это ядро ​​звезды, которая продолжает гореть как белый карлик. Когда у него кончается топливо, оно в конечном итоге темнеет до черного карлика.

Рождение звёзд

NGC 604, огромная звёздообразующая туманность в Галактике Треугольника

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационное сжатие облака. Один из сценариев, приводящих к этому — столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звёздообразования.

Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием гравитационных сил притяжения собираться вокруг центров будущих звезд, в масштабе времени:
tff≃1Gρ{\displaystyle t_{ff}\simeq {\frac {1}{\sqrt {G\rho }}}} К примеру, для Солнца tff=5⋅107{\displaystyle t_{ff}=5\cdot 10^{7}} лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент невидим, — глобула прозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счёт этого растет в размерах. В конце концов масса свободно перемещающегося в облаке вещества исчерпывается и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды.

Вышеописанный сценарий правомерен только в случае, если молекулярное облако не вращается, однако все они в той или иной мере обладают вращательным моментом. Согласно закону сохранения импульса, по мере уменьшения размера облака растёт скорость его вращения, и в определённый момент вещество перестает вращаться как одно тело и разделяется на слои, продолжающие коллапсировать независимо друг от друга. Число и массы этих слоёв зависят от начальных массы и скорости вращения молекулярного облака. В зависимости от этих параметров формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с планетами.

Эволюция звезд с малой массой

Пройдя стационарный период, который соответствует фазе главной последовательности, звезда начинает терять свою стабильность, и дальнейшая судьба у нее может быть различной.

Рассмотрим случай звезды маленькой массы, то есть имеющей массу в 4—5 раз меньше солнечной. Ее особенность такова: в самых глубоких слоях отсутствует конвекция, то есть материя, из которой она состоит, не столь активна, как это, напротив, имеет место у звезд большой массы.

Это означает, что, когда водород в ядре начинает иссякать, реакция не перемещается к более верхним слоям, а продолжает происходить вокруг ядра, где водород очень медленно превращается в гелий.

Однако ядро гелия раскаляется, верхние слои звезды упорядочиваются, перестраивая свою структуру, а светило на диаграмме Герцшпрунга — Рессела медленно покидает главную последовательность. Плотность материи в центре звезды увеличивается, а вещество в ядре вырождается, то есть приобретает особую консистенцию, отличную от консистенции обычного вещества.

Планетарная туманность М27 Гантель: яркий «пузырь» – сброшенная оболочка звезды

Звезда на диаграмме Герцшпрунга — Рессела смещается вправо, а затем вверх, двигаясь в область красных гигантов. Ее размеры значительно увеличиваются, а температура внешних слоев уменьшается благодаря эффекту расширения.

А вот температура ядра снижается, поэтому ядерная реакция уже не может идти из-за того, что температура недостаточна для синтеза гелия. Подобный синтез сопровождается так называемой вспышкой гелия. Звезда на диаграмме продолжает перемещаться вправо, в то место, где на оси абсцисс диаграммы находятся шаровые скопления.

В углеродном ядре температура растет до момента, когда, если звезда обладает достаточной массой, углерод начинает гореть, а затем взрывается. Происходит это или нет, во время последней стадии материя поверхности звезды теряет массу. Эта потеря может происходить на разных фазах или единовременно, когда верхние слои звезды стремятся наружу, образовывая большой шар.

В последнем случае образуется планетарная туманность, то есть сферическая оболочка материи, распространяющаяся в космос Ядро звезды, если при последующих сжатиях и расширениях оно испускает количество материи, превышающее 1,4 солнечной массы, становится белым карликом, из чего можно сделать вывод о ее медленном угасании.

Считается, что, поскольку охлаждение идет очень медленно, с рождения Вселенной ни один белый карлик еще не дошел до термической смерти.

Конечная стадия эволюции звезд, масса которых равна или меньше солнечной – звезда типа белый карлик.

Звездные скопления

Астрономы очень любят исследовать скопления звезд. Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам – каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца)[источник не указан 1512 дней], находящиеся на подходе к главной последовательности, полностью конвективны, — процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной[источник не указан 1093 дня]. Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба — постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца)[источник не указан 1512 дней] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B—F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра.
У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Протозвезда

Звёздные ясли в большом Магеллановом Облаке

Молекулярное облако во время гравитационного коллапса продолжает сжиматься до тех пор, пока не исчезнет гравитационная энергия. Избыточная энергия в основном теряется через излучение. Тем не менее, сжимающееся облако со временем становится непрозрачным для собственного излучения, что приводит к сильному повышению температуры — до 60-100 К. Частицы пыли излучают в длинноволновом инфракрасном спектре в области, где облако прозрачно. Таким образом, пыль способствует дальнейшему распаду облака.

Во время сжатия плотность облака увеличивается ближе к центру, и оно становится оптически непрозрачным при достижении около 10−13 граммов на кубический сантиметр. Место наибольшего скопления массы называется первым гидростатическим ядром, где начинается процесс повышения температуры, определяемой теоремой о вириале. Газ падает в сторону непрозрачной области сталкивается с ней и создаёт ударные волны, дополнительно нагревающие ядро.

Составное изображение молодых звёзд, вокруг молекулярного облака в созвездии Цефей

Часть сложной сети, состоящей из газовых облаков и звёздных скоплений в соседней галактике, большом Магеллановом Облаке

Когда температура ядра достигает примерно 2000 К, начинается процесс разделения водорода, соединённого в молекулы. Этот процесс сопровождается ионизацией атомов водорода и гелия. Процессы поглощения энергии сжатия продолжительны. Когда плотность падающей материи составляет порядка 10−8 граммов на см³, достигается достаточная прозрачность, чтобы высвобождать излучаемую протозвездой энергию. Сочетание конвекции внутри протозвезды и излучения её внешней части способствует дальнейшему процессу сжатия звёздной материи. Это продолжается до тех пор, пока газ сохраняет достаточно высокую температуру для поддержания внутреннего давления и таким образом препятствует дальнейшему гравитационному коллапсу. Данное явление называется гидростатическим равновесием. Когда небесное тело находится на завершающем этапе образования, оно уже называется протозвездой.

Рождение протозвезды также сопровождается и образованием околозвёздного диска, который служит своеобразным резервуаром для дальнейшего формирования звезды. В частности, когда масса и температура звезды достигают достаточных отметок, сила гравитации вызывает процесс слияния звезды и диска. Материя диска «дождём» обрушивается на поверхность звезды. В этой стадии формируются биполярные струи, так называемые Объекты Хербига — Аро — небольшие участки туманности, являющиеся результатом скопления избыточной энергии в звезде и последующего выталкивания части массы материи звезды.

Когда процесс роста звезды за счёт окружающих газа и пыли прекращается, она ещё не является собственно звездой, и называется «звёздой до главной последовательности» или просто «звездой-PMS». Основным источником энергии данных объектов является процесс гравитационного сжатия, в отличие от сжигания водорода в «зрелых звёздах». Процесс сжатия продолжается в соответствии с вертикальным эволюционным треком Хаяши в диаграмме Герцшпрунга — Рассела , пока не достигнет своей точки предела, с последующей фазой сжатия в соответствии с механизмом Кельвина — Гельмгольца. Во второй фазе температура звезды больше не меняется. Если масса звезды выше 0,5 M⊙{\displaystyle M_{\odot }}, то она продолжает сжиматься в соответствии с треком Хеньи и нагреваться до тех пор, пока в её недрах не запустится термоядерная реакция превращения водорода в гелий.

С момента, когда в ядре звезды начинает гореть водород, она уже считается полноценной звездой. В научной среде этап протозвезды в звездообразовании составлен исходя из массы, равной M⊙{\displaystyle M_{\odot }}, таким образом процесс образование более массивной звезды может занимать меньший промежуток времени и сопровождаться иными процессами.

В частности, если речь идёт о массивной протозвезде, (с массой выше 8 M⊙{\displaystyle M_{\odot }}), то сильное радиационное излучение препятствует падающей материи. Ранее считалось, что за счёт этого излучение может останавливать процесс дальнейшего сжатия массивных протозвёзд и предотвращать формирование звёзд с массами больше, чем несколько десятков солнечных масс. Однако недавние исследования показали, что радиационная энергия может высвобождаться в виде мощных струй, способствуя очищению поверхности протозвезды и позволяя ей продолжать соединяться с материей околозвёздного диска.

Дальнейшая эволюция звезды изучается в астрофизике, как звёздная эволюция.

Протозвезда

Образование протозвезды — HOPS 383 (2015).
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector