Жидкий гелий

Сноски

  1. P. Rennert, H. Schmiedel, C. Weißmantel. «Kleine Enzyklopädie Physik», VEB Bibliographisches Institut Leipzig, 1988, 192—194.
  2. L.D. Landau, E.M. Lifschitz. «Lehrbuch der Theoretischen Physik», Bd. III (Quantenmechanik), Akademie-Verlag, Berlin 1971, Kap. IX, pp. 218
  3. B.H. Bransden and C.J. Joachain’s Physics of Atoms and Molecules 2nd edition Pearson Education, Inc
  4. David I. Griffiths Introduction to Quantum Mechanics Second edition year 2005 Pearson Education, Inc
  5. J.D. Baker, R.N. Hill, and J.D. Morgan III (1989), «High Precision Calculation of Helium Atom Energy Levels», in AIP ConferenceProceedings 189, Relativistic, Quantum Electrodynamic, and Weak Interaction Effects in Atoms (AIP, New York),123

Свойства гелия-4[править | править код]

Жидкий гелий — бозе-жидкость, то есть жидкость, частицы которой являются бозонами.

Выше температуры 2,17 К гелий-4 ведёт себя как обычная криожидкость, то есть кипит, выделяя пузырьки газа. При достижении температуры 2,17 К (при давлении паров 0,005 МПа — так называемая λ-точка) жидкий 4Не претерпевает фазовый переход второго рода, сопровождающийся резким изменением ряда свойств: теплоёмкости, вязкости, плотности и других. В жидком гелии при температуре ниже температуры перехода одновременно сосуществуют две фазы, Не I и Не II, с сильно различающимися свойствами. Состояние жидкости в фазе гелия-II в некоторой степени аналогично состоянию бозе-конденсата (однако, в отличие от конденсата атомов разреженного газа, взаимодействие между атомами гелия в жидкости достаточно сильно, поэтому теория бозе-конденсата неприменима впрямую к гелию-II).

Сверхтекучесть и сверхтеплопроводностьправить | править код

Фазовая диаграмма гелия-4

Фазовый переход в гелии хорошо заметен, он проявляется в том, что кипение прекращается, жидкость становится совершено прозрачной. Испарение гелия, конечно, продолжается, но оно идёт исключительно с поверхности. Различие в поведении объясняется необычайно высокой теплопроводностью сверхтекучей фазы (во много миллионов раз выше, чем у Не I). При этом вязкость нормальной фазы остаётся практически неизменной, что следует из измерений вязкости методом колеблющегося диска. С увеличением давления температура перехода смещается в область более низких температур. Линия разграничения этих фаз называется λ-линией.

Для He II характерна сверхтекучесть — способность протекать без трения через узкие (диаметром менее 100 нм) капилляры и щели. Относительное содержание He II растет с понижением температуры и достигает 100 % при абсолютном нуле температуры — с этим были связаны попытки получения сверхнизких температур путём пропускания жидкого гелия через очень тонкий капилляр, через который пройдет только сверхтекучая компонента. Однако за счёт того, что при близких к абсолютному нулю температурах теплоёмкость также стремится к нулю, добиться существенных результатов не удалось — за счёт неизбежного нагрева от стенок капилляра и излучения.

За счёт сверхтекучести и достигается аномально высокая теплопроводность жидкого гелия — теплопередача идёт не за счёт теплопроводности, а за счёт конвекции сверхтекучей компоненты в противоток нормальной, которая переносит тепло (сверхтекучая компонента не может переносить тепло). Это свойство открыто в 1938 году П. Л. Капицей.

Гелия в промежуточном состоянии между этими двумя в природе не существует: либо он при абсолютном нуле, либо он в другом состоянии, нормальном. Гелий в сверхтекучем состоянии не может давить на заслонку, и вообще сверхтекучая жидкость не может производить никакого давления, так как это жидкость, вязкость которой равняется нулю, — мы её динамическими методами обнаружить не можем.
П. Л. Капица

Второй звукправить | править код

Основная статья: Второй звук в жидком гелии

За счёт одновременного наличия двух фаз в жидком гелии, имеется две скорости звука и специфическое явление — так называемый «второй звук». Второй звук — слабозатухающие колебания температуры и энтропии в сверхтекучем гелии. Скорость распространения второго звука определяется из уравнений гидродинамики сверхтекучей жидкости в двухкомпонентной модели. Если пренебречь коэффициентом теплового расширения (который у гелия аномально мал), то в волне второго звука осциллируют только температура и энтропия, а плотность и давление остаются постоянными. Распространение второго звука не сопровождается переносом вещества.

Второй звук можно также интерпретировать как колебания концентрации квазичастиц в сверхтекучем гелии. В чистом 4He это колебания в системе ротонов и фононов.

Существование второго звука было предсказано теоретически Ландау; расчётное значение равнялось 25 м/с. Фактически измеренное значение составляет 19,6 м/с.

Гелий-3 на Земле

Если радиоактивным изотопам гелия из-за кратковременности их существования так и не удалось покинуть лабораторию и сыграть сколько-нибудь значительную роль в эволюции вещества, то поиски второго после гелия-4 стабильного изотопа — гелия-3 — представляют определенный интерес

Здесь ученым пришлось столкнуться с очередной загадкой гелия: легкий изотоп встречался в земном веществе в сотни тысяч, миллионы и даже миллиарды раз реже, чем гелий-4.
На изотопное отношение природного гелия обратили внимание еще в 1939 году, после открытия изотопа гелия с массовым числом 3. Первые оценки содержания гелия-3 в атмосфере и некоторых природных газах, сделанные Л

Альваресом и Р. Корногом, показали, что его в 10⁶ — 10⁸ раз меньше, чем гелия-4. То, что этот изотоп не был обнаружен в свое время Ф. Астоном, казалось неудивительным: чтобы определить присутствие таких малых количеств изотопа гелия-3, нужна была более чувствительная аппаратура.

Самым же странным было не крайне низкое содержание гелия-3, изотопа стабильного в земном веществе, а необычайные вариации изотопного отношения гелия.
«В природе нет другого элемента, изотопное отношение которого менялось бы в столь широких пределах (отношение 3Не/4Не меняется более, чем на девять порядков)»,— писал в 1956 году известный советский
физик В. В. Чердынцев.
Исследование изотопного отношения гелия в природе знаменовало собой начало второго гелиевого века. Оказалось, что в различных местах земного шара оно различно. Наиболее высокая концентрация гелия-3 характерна для вулканических газов, где отношение ³Не/⁴Не примерно в 10 раз превышает атмосферное. Меньше всего гелия-3 обнаружили в радиоактивных минералах,  где отношение 3Не/4Не приблизительно равно 10⁻¹⁰. Это становится понятным, если учесть, что радиоактивные минералы содержат до 10 % урана и тория, при альфа-распаде которых постоянно пополняются запасы только тяжелого изотопа гелия. А вот литиевые минералы оказались в десятки и сотни тысяч раз более богатыми гелием-3, чем урановые и ториевые.

Обращало на себя внимание и такое обстоятельство: чем с больших глубин брались пробы газа, тем более высоким оказывалось и изотопное отношение гелия. Для вулканических и природных газов осадочной толщи оно различалось в сотни тысяч раз.
Возникал вопрос: имеет ли какое-либо отношение распространенность гелия-3 к проблеме происхождения гелия на Земле? Для ответа на вопрос необходимо обратиться к внеземным объектам. Оказалось, что практически во всех объектах внеземного происхождения: метеоритах и образцах лунного грунта, космическом излучении и солнечном ветре — присутствуют стабильные изотопы гелия. В 1952 году Ф. Панет исследовал изотопное отношение гелия в железных метеоритах. Он нашел, что хотя гелий и составляет миллионные доли вещества метеоритов, но изотопное отношение его достигает рекордного по сравнению с веществом Земли значения: 0,315. Предполагали, что легкий изотоп гелия образуется в метеоритах в результате ядерных реакций, протекающих под действием космического излучения. Подсчитано, что за один год в 1 г вещества железных метеоритов может обра-зовываться 5·10⁻¹⁴ см³ гелия. А возраст метеоритов составляет 10⁸— 10⁹ лет, и все это время они подвергаются «обстрелу» космическим излучением.

В каменных метеоритах изотопное отношение ге-лия в десятки раз ниже, чем в железных. Такое обеднение легким изотопом гелия объясняют, как и в случае радиоактивных минералов Земли, тем, что доля радиогенного гелия, возникшего в этих телах в результате альфа-распада, выше, чем в железных метеоритах из-за более высокого содержания в них радио-активных элементов. Кстати, такое обогащение гелием-3   справедливо   только   для   поверхностных областей метеоритов, куда могло проникнуть космическое излучение. Во внутренних же областях метеоритов изотопное отношение гелия оказывается удивительно постоянным: 3·10⁻⁴, т. е. на 10000 ядер гелия приходится три его легких изотопа.

Впервые такие данные получили в 1955 году советские ученые Э. К. Герлинг и Л. К. Левский, изучавшие состав метеорита Старое Песьяное. Они пред-, положили, что в веществе метеоритов сохранился так называемый первичный, солнечный, гелий, отражающий состав того вещества, из которого метеориты некогда образовались. Гипотеза о сохранении первичного гелия получила подтверждение, когда в руки исследователей попали образцы лунного грунта, доставленные советскими космическими станциями «Луна-16», «Луна-17» и американской экспедицией «Аполлон-14». В лунных породах изотопное отношение гелия было гораздо выше, чем для любого образца земного вещества: 10⁻²—10⁻⁴.

Получение

В настоящее время гелий-3 не добывается из природных источников (на Земле доступны незначительные количества гелия-3, чрезвычайно трудные для добычи), а создаётся при распаде искусственно полученного трития.

Тритий производится отдельными государствами как компонент для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах. Несколько сотен тысяч литров гелия-3 были наработаны в рамках оружейных ядерных программ, однако эти запасы уже недостаточны для существующего в США спроса. Дополнительно около 8 тыс. литров гелия-3 в год получают из распада запасов трития в США. В связи с растущей нехваткой гелия-3 рассматривались такие ранее экономически нецелесообразные возможности его производства, как получение в водных ядерных реакторах, выделение из продуктов работы тяжеловодных ядерных реакторов, производство трития или гелия-3 на ускорителях частиц, экстракция естественного гелия-3 из природного газа или атмосферы.

Планы добычи гелия-3 на Луне

Гелий-3 является побочным продуктом реакций, протекающих на Солнце, и в некотором количестве содержится в солнечном ветре и межпланетной среде. Попадающий в атмосферу Земли из межпланетного пространства гелий-3 быстро диссипирует обратно, его концентрация в атмосфере чрезвычайно низка.

Луна, у которой нет атмосферы, сохраняет значительные количества гелия-3 в поверхностном слое, по отдельным оценкам до 500 тыс. тонн, по другим — около 2,5 млн тонн.

Гипотетически, при термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 (по максимальным оценкам) могло бы хватить примерно на пять тысячелетий. Основной проблемой (если проигнорировать проблему реализуемости управляемых термоядерных реакторов с подобным горючим) остаётся реальность добычи гелия из лунного реголита. Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать на месте не менее 100 млн тонн грунта.

НАСА разрабатывала эскизные проекты гипотетических установок по переработке реголита и выделению гелия-3.

В январе 2006 года глава РКК «Энергия» Николай Севастьянов заявил, что Россия планирует создать постоянную базу на Луне и отработать транспортную схему по доставке на Землю гелия-3 уже к 2015 году (при условии достаточного финансирования), а ещё через 5 лет начать промышленную добычу изотопа[значимость факта?]. По состоянию на 2020 год постоянная база еще не была открыта.
В ноябре 2018 года глава «Роскосмоса» Дмитрий Рогозин вновь подтвердил возможность использования гелия-3 как основы для ракетного топлива; при этом, одновременно с Дмитрием Рогозиным, академик РАН Лев Зелёный заявил о практической бесполезности добычи гелия-3.

Вариационный метод

Основная статья: Вариационный метод

Для большей точности в вычислении энергии удобен вариационный принцип для учёта электрон-электронного взаимодействия Vee  при использовании волновой функции

ψ(r→1,r→2)=8πa3e−2(r1+r2)a{\displaystyle \psi _{0}({\vec {r}}_{1},\,{\vec {r}}_{2})={\frac {8}{\pi a^{3}}}e^{-2(r_{1}+r_{2})/a}}:
⟨H⟩=8E1+⟨Vee⟩=8E1+(e24πϵ)(8πa3)2∫e−4(r1+r2)a|r1→−r2→|d3r→1d3r→2{\displaystyle \langle H\rangle =8E_{1}+\langle V_{ee}\rangle =8E_{1}+{\Bigg (}{\frac {e^{2}}{4\pi \epsilon _{0}}}{\Bigg )}{\Bigg (}{\frac {8}{\pi a^{3}}}{\Bigg )}^{2}\int {\frac {e^{-4(r_{1}+r_{2})/a}}{|{\vec {r_{1}}}-{\vec {r_{2}}}|}}\,d^{3}{\vec {r}}_{1}\,d^{3}{\vec {r}}_{2}}

После интегрирования получим:

⟨H⟩=8E1+54a(e24πϵ)=8E1−52E1=−109+34=−75 eV{\displaystyle \langle H\rangle =8E_{1}+{\frac {5}{4a}}{\Bigg (}{\frac {e^{2}}{4\pi \epsilon _{0}}}{\Bigg )}=8E_{1}-{\frac {5}{2}}E_{1}=-109+34=-75{\text{ eV}}}

Это значение ближе к экспериментальному значению, но если использовать лучшую пробную функцию то приближение можно улучшить. Идеальная пробная функция будет учитывать влияние второго электрона. Другими словами, каждый электрон представляет собой облако отрицательного заряда, которое частично экранирует заряд ядра и, таким образом, электрон движется в эффективном потенциале с зарядом ядра Z, который меньше двух

Принимая во внимание это наблюдение волновая функция запишется в виде:

ψ(r→1,r→2)=Z3πa3e−Z(r1+r2)a{\displaystyle \psi ({\vec {r}}_{1},{\vec {r}}_{2})={\frac {Z^{3}}{\pi a^{3}}}e^{-Z(r_{1}+r_{2})/a}}

Используя Z как вариационный параметр дляя минимизации H. Гамильтониан для этой функции задаётся в виде:

⟨H⟩=2Z2E1+2(Z−2)(e24πϵ)⟨1r⟩+⟨Vee⟩{\displaystyle \langle H\rangle =2Z^{2}E_{1}+2(Z-2){\Bigg (}{\frac {e^{2}}{4\pi \epsilon _{0}}}{\Bigg )}\langle {\frac {1}{r}}\rangle +\langle V_{ee}\rangle }

Вычисляя средние от 1r{\displaystyle {\frac {1}{r}}} и Vee гамильтониан приводится к виду:

⟨H⟩=−2Z2+274ZE1{\displaystyle \langle H\rangle =E_{1}}

Минимизируя среднюю энергию по Z находим:

ddZ(−2Z2+274ZE1)={\displaystyle {\frac {d}{dZ}}{\Bigg (}E_{1}{\Bigg )}=0}
Z=2716∼1.69{\displaystyle Z={\frac {27}{16}}\sim 1.69}

Это показывает, что второй электрон частично экранирует заряд ядра уменьшая его с 2 до 1,69. В этом случае результат более точный 

12(32)6E1=−77.5 eV{\displaystyle {\frac {1}{2}}{\Bigg (}{\frac {3}{2}}{\Bigg )}^{6}E_{1}=-77.5{\text{ eV}}}

Где, E1 представляет ионизационную энергию для атома водорода.

Можно использовать следующую формула для лучшего согласия с экспериментом

−4917⋅(1+α)=−2.903386486 a.u.=−79.005153 eV{\displaystyle -{\frac {49}{17}}\cdot (1+\alpha )=-2.903386486{\text{ a.u.}}=-79.005153{\text{ eV}}}

где α{\displaystyle \alpha } — постоянная тонкой структуры.

Используя более сложные и точные вариационные функции, основное состояние атома гелия вычислимо с большей точностью и приближается к экспериментальному значению −78.95 eV. Вариационный подход использовался для вычислений этой системы с высокой точносью в работах G.W.F. Drake и J.D. Morgan III, Jonathan Baker and Robert Hill используя юазисные функции предложенные Hylleraas или Frankowski-Pekeris

следует заметить что для повышения точности до спектроскопических данных нужно принять во внимание эффекты релятивизма и квантовой электродинамики

Наследие холодной войны

Единственный способ получения гелия-3 — распад трития. Большая часть запасов 3He обязана своим происхождением распаду трития, произведенного во время ядерной гонки вооружений в период холодной войны. В США к 2003 году было накоплено примерно 260 000 л «сырого» (неочищенного) гелия-3, а к 2010 году осталось только 12000 л незадействованного газа. В связи с возрастанием спроса на этот дефицитный газ в 2007 году даже было восстановлено производство ограниченных количеств трития, и до 2015 года планируется дополнительно получать по 8000 л гелия-3 ежегодно. При этом годовой спрос на него уже сейчас составляет не менее 40 000 л (из них только 5% используется в медицине). В апреле 2010 года американский Комитет по науке и технологии США сделал вывод, что нехватка гелия-3 приведет к реальным негативным последствиям для многих областей. Даже ученые, работающие в ядерной отрасли США, испытывают трудности с приобретением гелия-3 из запасов государства.

Охлаждение смешиванием

Еще одна отрасль, которая не может обойтись без гелия-3 — это криогенная промышленность. Для достижения сверхнизких температур применяется т.н. рефрижератор растворения, который использует эффект растворения гелия-3 в гелии-4. При температуре ниже 0.87 К смесь разделяется на две фазы — богатую гелием-3 и гелием-4. Переход между этими фазами требует энергии, и это дает возможность охлаждения до очень низких температур — до 0,02 К. Простейшее такое устройство имеет достаточный запас гелия-3, который постепенно перемещается через границу раздела фаз в фазу, богатую гелием-4 с поглощением энергии. Когда запас гелия-3 закончится, устройство не сможет работать далее — оно «одноразовое».
Именно такой способ охлаждения, в частности, использовался в орбитальной обсерватории Planck Европейского космического агентства. В задачу «Планка» входила регистрация анизотропии реликтового излучения (с температурой около 2,7 К) с высоким разрешением с помощью 48 болометрических детекторов HFI (High Frequency Instrument), охлаждаемых до 0,1 К. До того, как запас гелия-3 в системе охлаждения был исчерпан, «Планк» успел сделать 5 снимков неба в микроволновом диапазоне.

Аукционная цена гелия-3 колеблется в районе $2000 за литр, причем никаких тенденций к снижению не наблюдается. Дефицит этого газа обусловлен тем, что основная часть гелия-3 используется для изготовления нейтронных детекторов, которые применяются в устройствах для обнаружения ядерных материалов. Такие детекторы регистрируют нейтроны по реакции (n, p) — захвату нейтрона и испусканию протона. А чтобы засечь попытки завоза ядерных материалов, таких детекторов требуется очень много — сотни тысяч штук. Именно по этой причине гелий-3 стал фантастически дорог и малодоступен для массовой медицины.

Впрочем, надежды есть. Правда, возлагаются они не на лунный гелий-3 (его добыча остается отдаленной перспективой), а на тритий, образующийся в тяжеловодных реакторах типа CANDU, которые эксплуатируются в Канаде, Аргентине, Румынии, Китае и Южной Корее.

Примечания

  1. Weaver, E. R. Bibliography of Helium Literature // Industrial & Engineering Chemistry. — 1919.
  2. Фастовский В.Г., Ровинский А.Е., Петровский Ю.В. Глава первая. Открытие. Происхождение. Распространенность. Применение // Инертные газы. — Изд. 2-е. — М.: Атомиздат, 1972. — С. 3—13. — 352 с. — 2400 экз.
  3. Хокинг С., Млодинов Л. Глава восьмая. Большой взрыв, черные дыры и эволюция Вселенной // Кратчайшая история времени. — СПб: Амфора. ТИД Амфора, 2006. — С. 79—98. — 180 с. — 5000 экз. — ISBN 5-367-00164-5.
  4. Самарий, как и уран и торий, является природным альфа-радиоактивным элементом.
  5. Фаустовский В. Г., Ровынский А. Е. Петровский Ю.В. Инертные газы. — Изд. 2. — М.: Атомиздат, 1972. — 352 с.
  6. Л. Паулинг. Природа химической связи / перевод с англ. М. Е. Дяткиной, под ред. проф. Я. К. Сыркина. — М.-Л.: ГНТИ Химической литературы, 1947. — С. 262. — 440 с.
  7. W. Heisenberg, Z. Physik 39, 499 (1926).
  8. Фриш С. Э. Оптические спектры атомов. — М.-Л.: Издательство физико-математической литературы, 1963. — С. 69—71. — 640 с.
  9. G. Breit and E. Teller, Astrophys. J. 91, 215 (1940).
  10. R.D.Knight. Lifetime of the Metastable 23S1 State in Stored Li+ Ions. — Ph.D.Thesis. Lawrence Berkeley Laboratory. — 1979. — 136 с.
  11. Это легко объяснимо из соображений симметрии. Как начальное, так и конечное состояние атома сферически симметричны и не имеют выделенного направления — оба электрона находятся в s-состоянии, и суммарный спиновый момент также нулевой. Излучение фотона с определённым импульсом требует нарушения этой симметрии.
  12. Государственный реестр открытий СССР. Яницкий И. Н. Научное открытие № 68 «Закономерность распределения концентрации гелия в земной коре»
  13. Мусиченко Н. И. Закономерности распределения гелия в земной коре и их значение при поисках геохимическими методами месторождений газа, нефти и радиоактивных элементов  : (Метод. рекомендации) / Н. И. Мусиченко, В. В. Иванов ; М-во геологии СССР. Всесоюз. науч.-исслед. ин-т ядерной геофизики и геохимии «ВНИИЯГГ». — Москва : , 1970. — 228 с., 1 л.

История открытия

Внешний вид простого вещества
инертный газ без цвета, вкуса и запаха
Свойства атома
Имя, символ, номер Гелий/Helium (He), 2
Атомная масса
(молярная масса)
34,002602 а. е. м. (г/моль)
Электронная конфигурация 1s2
Радиус атома (31) пм
Химические свойства
Ковалентный радиус 28 пм
Радиус иона 93 пм
Электроотрицательность 4,5 (шкала Полинга)
Электродный потенциал
Степени окисления
Энергия ионизации
(первый электрон)
2361,3(24,47) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 0,147 (при −270 °C) 0,00017846 (при +20 °C) г/см3
Температура плавления 0,95 (при 2,5 МПа)
Температура кипения 4,215 (для 4He)
Теплота испарения 0,08 кДж/моль
Молярная теплоёмкость 20,79 Дж/(K·моль)
Молярный объём 31,8 см3/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=3,570; c=5,84 Å
Температура Дебая 1,633
Прочие характеристики
Теплопроводность (300 K) 0,152 Вт/(м·К)

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия. Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D3, так как она была очень близко расположена к Фраунгоферовым линиям D1 (589,59 нм) и D2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» (от др.-греч. ἥλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной стороне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор.

В 1881 году итальянец Луиджи Пальмиери опубликовал сообщение об открытии им гелия в вулканических газах (фумаролах). Он исследовал светло-желтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмиери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Ученые круги встретили это сообщение с недоверием, так как свой опыт Пальмиери описал неясно. Спустя многие годы в составе фумарол действительно были найдены небольшие количества гелия и аргона.

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому ученому-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло.

Хранение и транспортировка

Как и другие криожидкости, гелий хранят в сосудах Дьюара. Гелий в них всегда хранится под небольшим давлением — за счёт естественного испарения жидкости. Это позволяет в случае небольшой негерметичности не допустить загрязнения гелия. Избыточное давление стравливается через клапан. На практике, так как гелий достаточно дорог, то, чтобы не выпускать газ в атмосферу, на головной части дьюара размещается соединительная часть для подсоединения дьюара к гелиевой сети, по которой газообразный гелий собирается для повторного использования. Как правило, на этом же узле крепится манометр для контроля давления и аварийный клапан.

Гелиевые дьюары переворачивать нельзя, для переливания содержимого применяют специальные сифоны.

Гелий имеет очень низкую теплоту испарения (в 20 раз меньше, чем у водорода), но зато высокую теплопроводность. Поэтому к качеству теплоизоляции гелиевых дьюаров предъявляются высокие требования. При повреждении вакуумной изоляции жидкость так бурно вскипает, что дьюар может взорваться. Как правило, для снижения потерь гелия на испарение используется «азотная рубашка» — непосредственно в вакуумной полости сосуда Дьюара расположена ещё одна оболочка, которая охлаждается кипящим жидким азотом (температура 77 К). За счёт этого удается существенно сократить теплообмен между гелием и атмосферой.

Жидкий гелий перевозят в специальных транспортных сосудах, выпускаемыми промышленно. В СССР и позднее в России выпускались сосуды типа СТГ-10, СТГ-25, СТГ-40 и СТГ-100 ёмкостью 10, 25, 40 и 100 литров, соответственно. Эти сосуды широко используются в российских лабораториях и в настоящее время. Сосуды с жидким гелием должны транспортироваться и храниться в вертикальном положении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector